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Abstract. This paper presents, within a unified framework, a potentially powerful canonical dual
transformation method and associated generalized duality theory in nonsmooth global optimization.
It is shown that by the use of this method, many nonsmooth/nonconvex constrained primal prob-
lems inR" can be reformulated into certain smooth/convex unconstrained dual probleRi% in

with m < n and without duality gap, and some NP-hard concave minimization problems can be
transformed into unconstrained convex minimization dual problems. The extended Lagrange duality
principles proposed recently in finite deformation theory are generalized suitable for solving a large
class of nonconvex and nonsmooth problems. The very interesting generalized triality theory can
be used to establish nice theoretical results and to develop efficient alternative algorithms for robust
computations.
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1. Introduction

The aim of this paper is to develop a powerful method and general theory for
solving the following general nonconvex and nonsmaooth extremum problem

(Pex) 0 Pkx)=d(x, A(x)) —» extremumVx € X,

where X is a locally convex topological vector space (l.c.8),: X — R =
R U {—o0} U {400} is a nonconvex and nonsmooth extended function with the
non-empty effective domain

X, =domP = {x € X| |P(x)| < +00}.

The operatorA : X — Y is a continuous, generally nonlinear, mapping frém

to another l.c.sY, and® : X x Y — R is an extended function. Proble¢tPey)

may have many locally extremum (either minimum or maximum) solutions, and
it represents a generglobal optimizationproblem. It was shown in Gao (1999)

* This paper is dedicated to the memory of Professor P.D. Panagiotopoulos
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that this class of problems covers a great variety of situations including constrained
nonconvex variational analysid,c. programming, i.e. nonconvex problems of d.c.
functions (difference of convex functions), variational inequality, complementarity
problems, network problems and nonconvex dynamical systems and much more.

In the history of science, mathematics and mechanics have been always com-
plementary partners. Starting from the pioneering work of Moreau (1968) in a
frictional contact mechanics problem, where the notions of the super-potential and
subdifferential were originally introduced, the subject of non-smooth/non-convex
global optimization has experienced significant development during the last three
decades. Many problems arising in natural systems (such as engineering mechan-
ics, chemical reactions, network flows and mathematical economics, etc.) require
the considerations of nonconvexity and nondifferentiablity for their mathematical
modeling and the cost functions. The terminoldggn-Smooth Mechaniosas
formally proposed by Moreau, Panagiotopoulos and Strang (1988). Several mono-
graphs have documented the basic theory, methods, algorithms and applications
of nonsmooth/nonconvex variational analysis and global optimizations (cf., e.g.,
Panagiotopoulos, 1985; Horst and Pardalos, 1995; Dem’yanov et al., 1996; Mis-
takidis and Stavroulakis, 1998; Motreanu and Panagiotopoulos, 1999 and Gao et
al., 2000). Generally speaking, traditional direct methods for solving nonsmooth
and nonconvex problems are usually very difficult, or even impossible. The so-
called relaxation methods can be used mainly for finding global optimal solutions
(global minimizer of maximizer). However, in unilateral post-buckling analysis of
nonlinear beam theory, it was shown by Gao (1998b) that the solution of actual
buckling state has to be a local minimizer. In phase transitions and nonconvex
dynamical programming, local extrema usually play an important role in under-
standing the physical mechanism of systems. In nonsmooth global optimization
problems, more recent trends consist of the so-caémmulationandnonlinear
rescaling technique&ef. e.g., Fukushima and Qi, 1999; Polyak and Griva, 2000).
The classical Lagrange duality theory is the main tool used in these methods.

Duality is a fundamental concept that underlies almost all natural phenomena.
The duality methods in classical optimization possess beautiful theoretical prop-
erties, potentially powerful alternative performances and pleasing relationships to
many other fields (see Walk, 1989; Wright, 1996). A self-contained comprehensive
presentation of the mathematical theory in general nonconvex, nonsmooth systems
was given recently by Gao (1999). In global optimization, duality theory falls
principally into three categories:

(1) the classical saddle Lagrange (minimax) duality in convex problems,

(2) the nice super-Lagrangian bi-duality in geometrically linear systems and

(3) the interesting triality and multi-duality in general nonconvex canonical sys-
tems.
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In thegeometrically linear systems/hereA : XX — Y is a linear operator and
d : X xY — Risacanonical functior(i.e. ®(x, y*) is either convex or concave in
each of its variables), the duality has been studied substantially during the last thirty
years for both convex and nonconvex canonical systems. In the cage {t¥ét—
R is convex, its dual function can be well-determined by the so-called Rockafellar
dual transformationP4(y*) = ®*(—A*y*, y*), where®* : X* x Y* —R=
R U {—o0} is the well-known Fenchel-Rockafellar conjugate functiondofThe
Fenchel-Rockafellar duality is essentially equivalent to the classical saddle Lag-
range duality, which yields a so-called mono-duality, i.e., each minimum primal
problem possesses a unique maximum dual problem ami(inf = supP?(y*)
(see Gao, 1999). During the last decade, the so-calledal-dual interior point
methodhas emerged as the most important and efficient revolutionary technique
in mathematical programming (cf. e.g. Wright, 1997 for linear programming, Gay
et al., 1998 and Wright, 1998 for nonconvex nonlinear programming). Actually,
the primal-dual methods and ideas were studied originally by engineers at the
beginning of this century (cf. e.g., Maier et al., 2000; Gao, 1999). It is well-known
in engineering structural limit analysis that the direct approaches for solving min-
imum potential energy (primal problem) can only provide upper bounds of the
so-called collapse loading factor. On the other hand, the maximum complementary
energy principle (dual problem) and methods give the lower bound solutions. In
safety analysis of engineering structures, the primal-dual methods provide defin-
itely powerful and efficient tolls for solving nonsmooth, nonlinear problems (cf.
e.g., Maier, 1969; Casciaro and Cascini, 1982; Gao, 1988a,b, 1999). The recent
article by Maieret al (2000) serves as an excellent survey on the developments for
applications of mathematical programming in engineering structural mechanics.
Dual to the interior-point methods, the so-callean-penalty finite element pro-
grammingdeveloped by Gao (1988b) is essentiallpramal-dual exterior-point
method.It was proved that in rigid-perfectly plastic limit analysis, the exterior
penalty functional and the associated perturbation method possess a wonderful
physical meaning, which leads to an efficient technique of dimension reduction in
nonlinear mixed finite element programming by use of the saddle-Lagrange duality
theory (Gao, 1988b). However, if the primal functidhx) is nonconvex, there
exists aduality gapbetween the primal probleii#;,;) and the Fenchel-Rockafellar
dual problem(2Z,), i.e. inf P(x) > supP(y*). In this sense, the well-developed
saddle-Lagrange duality and the Fenchel-Rockafellar duality can be used mainly
for convex problems.

The duality for nonconvex minimization was first studied by Toland (1978,

1979) for d.c. functionsP (x) = W(Ax) — F(x), whereW : Y —R:= RU {+o00}

andF : X —R are two convex functions. The d.c. optimization problems arise

naturally from many applications in engineering, economics and other sciences.
The generalizations of Toland’s duality theory were made by Auchmuty (1983—
1997) to geometrically linear nonconvex variational analysis. It was shown that the
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Toland’s double-min duality for d.c. programming is a special case of the so-called
anomalous dual problems. As a class of typical nonconvex global optimization
problems, a detailed survey article on the theory, methods and algorithms of the d.c.
programming was given by Tuy (1995). During last three decades several important
duality concepts have been developed as studied for nonconvex optimization (cf.
e.g., Ekeland, 1977; Crouzeix, 1981; Hiriart-Urruty, 1985, Penot and Volle, 1990;
Singer, 1986-98; Thach et al., 1993-96; Tuy, 1991, 1995 and Rockafellar and Wets,
1997). However, it was tradition in global optimization that the primal problem is
usually considered as a global minimization problem over a feasible set. This tradi-
tion obscured our sight and thus, in d.c. programming, only the double-min duality
theory was studied. In nonconvex problems, the local maximizers play important
roles in phase transition, unilateral bifurcations and chaotic dynamics.

Duality theory in geometrically nonlinear systems was originally studied by
Gao and Strang (1989) in large deformation variational/boundary value problems
governed by nonsmooth constitutive laws, where the primal funchon) =
W(A(x)) — F(x) represents the total potential of the systéif(;,y) and F(x) are
respectively the internal and external energies. In finite deformation field theory,
the nonlinear operatah is usually quadratic. In order to recover the duality gap
in traditional Fenchel-Rockafellar duality theory, they introduced a so-catlet
plementary gap functiorwhich leads to a generalized complementary variational
principle and a nonlinear Lagrange duality theoryfuilly nonlinear variational
problems. They proved that if this complementary gap function possesses a positive
sign, the generalized complementary enekgy, y*) is a saddle functional. Their
systematical works on duality theory lead to a unified framework in applied math-
ematics (see Strang, 1986) andully nonlinear canonical systenfsee Gao et al.,
1989-1999). Recently, in the study of the post-buckling analysis of nonlinear beam
theory, it was discovered by Gao (1996, 1997, 1998b) that for coiéx) and
guadraticA, if the gap function is negativd, (x, y*) is a so-calledsuper-critical
point functiona) and a very interesting tri-duality theory was proposed for quad-
ratic operatorA (x). A comprehensive study on duality principles in nonsmooth
and nonconvex systems is recently given by Gao (1999).

The aim of this article is to generalize the author’s previous results on non-
convex variational systems into nonsmooth global optimization problems suitable
for arbitrary nonlinear operatak. Actually, the key idea of the so-called canon-
ical dual transformation method is to choose a certain nonlinear opexasach
that® : X x Y — R is a canonical function. Thus, thgerfect duality prin-
ciples (without duality gap) can be easily formulated by the classical Legendre
transformation. The rest of this paper is divided into five main sections. The next
section set up the notation used in the paper and describes the problems. A general
framework in fully nonlinear, nonsmooth systems is discussed. Section 3 presents
an extended Lagrangian duality theory in general global optimization. The critical
points in fully nonlinear systems are classified. Section 4 is devoted mainly to
the super-Lagrange duality theory. The nice bi-duality proposed in geometrically
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linear systems and d.c. programming is generalized to arbitrary funttiony*).
Section 5 discusses the triality in fully nonlinear systems. The very interesting
triality theory is generalized for general geometrically nonlinear operatand

are illustrated by quadratic operators in global optimization. The last two sections
present applications and concluding remarks.

2. Framework of Canonical Systems and Classification

Let X6 andX* be two locally convex topological real linear spaces, finite- or infinite
dimensional, placed in separating duality by a bilinear fgrm : X x X* — R.

For a given extended real-valued functiBn XX — R = R U {—o0} U {+00}, the
sub- and super-differentials &f atx € X are defined by

d"P(x)={x"e X*|P(x) — P(x) > (X", x —Xx) Vx € X},

AT P(X) = {x* € X*|P(x) — P(x) < (X", x — X) Vx € X},

respectively. Clearly, we always have P = —9~(—P). In convex analysis, it is
convention thad~ is simply written asi. In this paperg stands for eitheb~ or
a7, i.e.

9=1{3", at}.
If P is smooth, Gateaux-differentiablejat X, C X, then
OP(x) =90 P(x)=0TP(x) ={DP(X)},

whereDP : X, — X* denotes the Gateaux derivative Bfat x. The following
notations and definitions, used in Gao (1999), will be of convenience in global
optimization.

DEFINITION 1. The set of functions® : X — R which are either convex or
concave is denoted dy(X). In particular, let"(%) denote the subset of functions
P e I'(%) which are convex antl (%) the subset of e I'() which are concave.

The canonical function spac&s(X,) is a subset of function® < I'(X,)
which are Gateaux differentiable 06, c X.

The extended canonical function spafg(X) is a subset of function® <
' (%) which are either convex, lower semicontinuous or concave, upper semicon-
tinuous, and ifP takes the valuesoo, thenP is identically equal tatoco. a

By the Legendre-Fenchel transformation, #ger-conjugate functionf an
extended functiorP : X — R is defined by

P*(x*) = SUD?{(x,x*) — P(x)}.
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By the theory of convex analysivf’,ti s X —>]I§:: RU {400} is always convex and
lower semicontinuous, i.e?* € I'g(X*). Dually, thesub-conjugate functioof P,
defined by

P’(x*) = inf {{x, x*) = P(x)},

is always concave and upper semicontinuous,i’ec I'o(X*), and P* = — P*.
Both the super- and sub-conjugates are called Fenchel conjugate functions and we
write P* = {P", P*}. Thus the extended Fenchel transformation can be written as

P*(x*) = ext{(x,x") — P(x)}. (2.1)
Clearly, if P € To(X), we have the Fenchel equivalent relations, namely,
x*€edP(kx) & xedP*(x") & Px)+ P'(&x"=(x, x"). (2.2)

The pair(x, x*) is called the=enchel duality paion X5 x X* if and only if equation
(2.2) holds onX x X*.

The conjugate pai¢x, x*) is called theLegendre duality paion X, x X! C
X x X* if and only if the equivelant relations

x*=DP(kx) & x=DP'"x*) & Pkx)+P"&") = (x,x* (2.3)

hold onX, x X7.

Let (¥, Y*) be an another pair of locally convex topological real linear spaces
paired in separating duality by the second bilinear fé¢rm-) : ¥ x Y* — R. The
so-calledgeometrical operaton : XX — Y is a continuous, Gateaux differentiable
operator such that for any givene X, C X, there exists & € ¥, C Y satisfying
thegeometrical equation

y = A(x).
The directional derivative of atx in the directionx € X is then definded by

8y (%: x) 1= lim Yo+ 9’;) —YO AL xs (2.4)

—0t

whereA;(x) = DA(x) denotes the Gateaux derivative of the operatat x. For
a giveny* € Y*, £(x) = (A(x) ; y*)is a real-valued function of on X. Its
Gateaux derivative at € X, in the directionx € X reads

$E(x; x) = (A (X)x 5 y*) = (x, A7(X)y"),

where A’ (x) : Y* — X* is the adjoint operator of\, associated with the two
bilinear forms. _
Let® : X x ¥ — R be an extended function such that

P(x) = &(x, A(x)).
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If ®: X xY — Risan extended canonical function, i®.e To(X) x [o(Y), the
duality relations between the paired spac®s X*) and(Y, ¥*) can be written as

x* €0, P(x,y), ¥y edd(x,y). (2.5)

On the product spac%, x Y, C X x Y, if the canonical functionb (x, y) is
finite and Gateaux differentiable such that the feasible spgoean be written as

X = {x € xal A(x) € ya}’ (26)
then onX, the critical condition

SP(x;x) = (x, DP(%)) = (x, D,®(x, A(X))) +
(A;(X)x ; Dy® (X, A(X))) =0 Vx € X,

leads to the Euler equation:
D, ®(x, A(X)) + A;(x)D,®(x, A(x)) =0, (2.7)

where D, ® and D,® denote the partial Gateaux derivativesdfvith respect to
x andy, respectively. Sinc® € I'c(X,) x ['¢(Y,) is a canonical function, the
Gateaux derivativ® ® : X, x Y, — X:xY* C X*x Y* is amonotone mapping,
i.e. there exists a pait*, y*) € X* x Y* such that

—%* = D, (%, A(X), 7 =D,®F,A®X)). (2.8)
Then the so-calledirtual work principle

SE(x; x) = (A (X)x 5 y5) = (x, AJ(X)Y") = (x, X*) Vx € X (2.9)
leads to the so-calleldalance (or equilibrium) equation

= AYR)Y, (2.10)

which linearly depends on the dual variabte
In geometrically linear systems, whefe= A,, the values of the two bilinear
(-, -yand{(-; -) are equal, i.e.

(Vi ¥ =(Ax; y) =(x, A"y =(x, x7).

However, in geometrically nonlinear systemfis# A;, and the following operator
decomposition is introduced by Gao and Strang (1989)

Ax) =A,x0)x + A(x), (2.11)

whereA, : X — Y is called thecomplementary operataf the Gateaux derivative
operatorA,, which plays a key role in nonconvex duality theory. Thus, there exists
a gap between the two bilinear forms, i.e.

(AX); y) = (&, Af(D)Yy") = GG, y) =(x, X') —GK,y), (212)
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T€ X ~—(z, z*)—Xx* >3 z*

Ai+A.=A A =(A—A)*

ye y ~—(y;y)—y 3y
Figure 1. Framework in fully nonlinear systems.

whereG : X x Y* — R is so-calledcomplementary gap function, defined by
Gx,y) = (=Ac(x); y): X x Y — R (2.13)

This function was first introduced by Gao and Strang (1989) in finite deformation
theory, which plays a key role in nonconvex variational problems.

The following classification for the global optimization problems was given by
Gao (1998, 1999).

DEFINITION 2. Suppose that for a given proble(Pe), the geometrical op-
eratorA : XX — Y can be chosen in such a way th&tx) = ®(x, A(x)),
® e I'g(X,) X T (YY) and X, = {x € X, A(x) € Y,}. Then

(1) the transformatiofP; X} — {®; X, x Y.} is called thecanonical trans-
formation and® : X, x Y, — R is called thecanonical function associated with
A;

(2) the problem(£eyp is calledgeometrically nonlinear (resp. lineaij A :
X — Y is nonlinear (resp. linear); it is callgghysically nonlineaf(resp. linear) if
the duality mappingD® : X, x ¥, — X x Y is nonlinear (resp. linear); it is
calledfully nonlinearif it is both geometrically and physically nonlinear. [

The canonical transformation plays a fundamental role in duality theory of
global optimization. By this definition, the governing Equation (2.7) for fully non-
linear problems can be written in th@canonical forms, namely,

(1) geometrical equationy = A(x),
(2) physical relations:  y* € 9,®(x,y), —x* € 0, P(x,y), (2.14)
(3) balance equation:  x* = A7 (x)y*.

A framework for the fully nonlinear system is shown in Figure 1. Extensive
illustrations of the canonical transformation and the tri-canonical forms in math-
ematical physics and variational analysis were given in the monograph by Gao
(1999).

Very often, the extended canonical functidncan be written in the form

Q(x,y) =W(y) — Fx), Fel'(X), Wel(}Y).
The duality relations (2.5) in this special case take the forms

x*€edF(x), y"edW(y).
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If F eTg(X,) andW e I'c(Y,) are Gateaux differentiable, the Euler equation
(2.7) reads

Af(X)DW(A(x)) — DF(x) = 0.

If A: X — Yislinear, andW : ¥ — R is quadratic such thabW = Cy,
whereC : Y — Y* is a linear operator, then the governing equations for linear
system can be written as

A*CAx = Ax = x*.

For conservative systems, the operato= A*C A is usually symmetric. In static
systems( is usually positive-definite and the associated total potetied con-
vex. However, in dynamical systeni,is indefinite andP is called the total action,
which is usually a d.c. function in convex Hamilton systems.

To demonstrate how the above scheme fits in with the finite dimensional global
optimization, we list some examples in nonlinear programming.

EXAMPLE 1. Geometrically linear nonsmooth constrained global minimiza-
tion in R”.

We first consider the following global minimization problem
(Pmin) mMIinf(x) s.t. x € X C R, (2.15)
where the primal feasible spadg, is a nonempty convex subsetlit,
X ={x € Xo|l Ax € Y},

X, C R", Y, C R™ are two convex subsetg, € I'o(X,) is a given canonical
function; A = {4;;} : R" — R™ is a linear operator (matrix) iR">".

To reformulate this general nonsmooth global minimization problem in the geo-
metrically linear canonical model form, we 18 = X* = R", Y = Y* = R",
with the standard coordinatewise partial ordering and bilinear forms

(Ax: y*) = (A0 Ty =x"(ATy) = (x, AY) =) xikyy)
i=1 j=1

Then, the adjoint ofA associated with these standard bilinear forms is simply
A* = AT € R™™ For a given convex seX,, its indicatordx, (x) = {O(if x €
X)), +oo(ifx ¢ X,)} is a convex, lower semicontinuous function. The two
canonical functiong’ € T'g(X) andW ¢ 1‘(3/) can be defined by

F(x)==fx) —dx,(x), W) =1y, ().
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Clearly, the effective domains dom = X, C R" and domW = Y, C R™ are
nonempty and convex. Thus, the constrained problem (2.15) can be written in the
extended (unconstrained) form

P(x) =y, (Ax) + f(x) + dx,(x) — min Vx e R". (2.16)

Its effective domain don® = X, and the conditionx € X is called themplicit
constraint

The extended primal problem (2.16) covers many important special cases in
constrained optimization problems.

Case . If f € I'6(Xa), X, = R"and¥y, = {y € R"| g(y) =0, k =
1,---,p}, whereg : Y — R” is a p-vector of convex, Gateaux differentiable
functions withkth componenig, (x), then the primal probleni®min) is a convex
minimization problem with equality constrainggAx) = 0. In this case, the ca-
nonical functionF(x) = —f(x) — dx,(x) = —f(x) is concave and Gateaux
differentiable inR”, 3t F(x) = {—Djf(x)}. While the subdifferential oW is a
convex subset df*, i.e.

()
Pty ey,

- _ Z/f:lg
TWO) = { 0 otherwise

where the Lagrange multipligr* € R” is the dual variable o € R”. In the case
that f : X, — R is smooth function, then, the optimality conditi@gnP (x) = 0
leads to the Euler-Lagrange equation

T Logk(A
IS Zgz% = Df(), @A) =0.
k=1

Case ll. If f : X — R is nonsmooth, say, for examp¥ = R and

1.2 -
_ ] zax if x < x4, 217
f) = { %axf—l— %b(x — X))+ xp(x —x)  if x > xg, (2.17)

wherea, b, x, andx; are positive constants. In this case, the cost funcfion
is nonsmooth (see Figure 2(a)), and its Gateaux derivative is then a discontinuous
function (see Figure 3a), i.e.

X = Df(x) = { ax T < Xa, (2.18)

b(x —x,) +xj; if x > x4,

The traditional direct approaches for solving this nonsmooth constrained optimiz-
ation problem is difficult.
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(a) Graph of f(z). (b) Graph of f*(z*).

Figure 2. Nonsmooth function and its smooth Legendre conjugate.

*
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(a) z* = Df(x) (b) z = Df*(z*)

Figure 3. Discontinuous constitutive law and continuous inverse form.

By the fact that the Legendre conjugate of the nonsmgoif a smooth func-
tion, i.e. (see Figure 2(b))

%x*z if x* < xf,
ff(x*) = %xé‘z + x,(x* —x) if xF < x* <xj,
%x*z + x,(x* —x3) + %(x* —xp)? if x* > x},
(2.19)
its Gateaux derivative is a continuous function (see Fig. 3b)
alx* if x* < xf,
x=Df"(x*) =1 x, if x¥ < x* <xj, (2.20)

Xg+ 2(x* —xp) if x* > x}

Thus, the dual problem will be much easier than the nonsmooth primal problem.
Case lll. Concave minimization and complementarity problems.
If f e I'(X,) is concave and for a giveh Y = R™, the feasible space
Y. ={y € R"| y > b} is a nonempty, closed convex cone, then the primal prob-
lem (2.15) is the so-calledoncave minimization problent.oncave minimization
problems constitutive one of the most fundamental and intensely-studied classes of
problems in global optimization. Generally speaking, concave minimization prob-
lems are NP-hard and will possess many solutions that are local, but not global,
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minima. For this reason, concave optimization problems are also calldtex-
tremalglobal optimization problems (see Benson, 1995). The application of stand-
ard algorithms designed for solving constrained convex programming problems
will generally fail to solve multiextremal global optimization problems.

SinceF (x) = — f(x) is convex, the extended problem

P(x) = W(AX) — F(x) = Jy,(Ax) + f(x) » min Vx € X (2.21)

is a d.c. optimization problem. The classical Lagrangian associated with this non-
convex optimization with inequality constraint reads

Lx,pn) = fx)+(Ax —b; p), (2.22)

wherep € Y* is a Lagrange multiplier. Sincé(x, i) is concave inx, and we
have inf, L(x, ) = —o0, the classical saddle Lagrange duality does not work for
this nonconvex problem. The extremality conditi®.(x, u) = O leads to the
Euler-Lagrange equation

A'u+ Df(x) =0, Ax=5b (2.23)
subjected to the KKT condition
Ax—b2>20, (Ax—b; u)y=0, u<0. (2.24)

For nonsmoothf, traditional direct methods for solving this nonlinear comple-
mentarity problem is very difficult. In this paper, we will show that by use of the
super-Lagrange duality theory, this constrained nonconvex minimization can be
converted into a unconstrained convex minimization dual problem.

EXAMPLE 2. Geometrically nonlinear problems.

Let us now consider the nonconvex optimization problerfia= R”
11
P(x) = Ea(zllellz —w?—xTe — staVvxeR", (2.25)

wherea > 0, A : R" — R™ is a matrix inR™ andc € R”" is a given vector.
Clearly, for any given parameter > 0, P(x) is honconvex ofR”. The nonconvex
problem (2.25) appears very often in many applications of physics, engineering
and sciences. For example, in the casehatm =1, A =1,

P() = Sa(ix? - py?
X) = 2(1 2x o cx
is adouble-well functior{see Figure 4a), which was first studied by van der Waals
in fluids mechanics in 1895. f =m =2, A =1 e R?*?is an identity, then
1 2

P(x) = Ea(zxf + Exz — ,bL)2 — C1X1 — C2X).
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N

(a) Van der Waal's energy (n=1) (b) "Mexican hat" (n=2)

Figure 4. lllustration of the nonconvex function in problem (2.25).

Forc = 0, this is the so-called ‘Mexican hat’ function (see Figure 4b)in cosmology
and theoretical physics. In phase transitions of shape memory alloys, each local
minimizer of the total potentiaP corresponding to a certain phase state of material.
However, each local maximizer characterizes the critical conditions that leads to
the phase transitions. In unilateral post-bifurcation analysis, the solution of the
post-buckling state is usually a local minimizer (see Gao, 1998b).

Following the traditional way, we firstlet = A = A : R" — R” be alinear
operator, such thak (x) = W(Ax) — F(x) with

1 1
W(y) = EG(E)’TV —w? Fx) =xTec.

By the Fenchel-Rockafellar dual theory, the classical dual problem associated with
the linear operatoh = A is

Pi(y*) = —WH(y*) — max s.t. A¥y* =c. (2.26)

Since the nonconveX (y) is not a canonical function, the constitutive equation
y* = DW(y) is not one-to-one. Thus, the Legendre conjugat®@§) does not
have a simple algebraic expression. Although the Fenchel conjugate’) is
convex inR™, there exists a duality gap between the primal problem (2.25) and the
Fenchel-Rockafellar dual problem (2.26), i.e., fnfx) > supP?(y*) due to the
nonconvexity of P. This duality gap shows that the Fenchel-Rockafellar duality
theory can be used mainly for convex geometrically linear problems.

To put the nonconvex problem (2.25) in our canonical framework, we need to
let A : R" — R be a quadratic operator

1 2 1 T
y=AKx) = EIIAXII —H=ox Cx —p,
whereC = ATA = CT e R™. In finite deformation theory, this nice symmet-
rical matrix C is the well-knownright Cauchy-Green strain tensor. However, in
differential geometry( is called theRiemannian metric tensofhen, in terms of
xeR"andy e R, ®(x,y) = W(y)—F(x) = %ayz—xTc is a canonical function
on R" x R. The Legendre conjugate of the quadratic functi@ity) = %ay2 is
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simply defined byW*(y*) = 3a~'y*2. The canonical constitutive equations
x*=DF(x)=c, y"=DW()=ay

are linear. The tri-canonical equations then can be listed as
1 2 * T | *
y=slAx|" =, y"=ay, (Cx)"y" =c.

Since the geometrical operataris nonlinear, and the canonical constitutive equa-
tion is linear, the primal problem (2.25) is a geometrically nonlinear optimization
problem inR”".

3. Canonical Dual Transformation and Extended Lagrangians

The goal of this section is to discuss the extended Lagrangians associated with the
fully nonlinear, nonconvex primal problem

(Pext) : Px) =P(x, A(x)) > ext Vx e X

whereA : X — Y is a Gateaux differentiable operator such #bat I'o(X) x
['o(Y) is an extended canonical function, which is finite and Gateaux differentiable
onX, x Y, i.e. ® € I'g(X,) x ['c(Y,). Thus, the implicit constraint afPex)
isx € X = {x € X4 A(x) € Y,}. A systematic presentation on the extended
Lagrange duality for geometrically linear systems was given by Gao (1999). Our
aim here is to study general fully nonlinear, global optimization problems.

For any fixedx € X, the partial conjugate function @b with respect toy is
defined by

OT(x, y) =ext{(y; y*) — (x,y)| Vy € Y}

Clearly, if ®(x,-) € I'c(¥.), andy* C Y* is the range of the mappinD,d :
Y. — Y, then the Legendre duality relation

Y =Dy®(x,y) & y = Dpdi(x,y") & O(x,y) + DJ(x, y) = (y; )

holds onY, x %*. For the canonical functio® € I'o(X) x I'o(Y), oI (x, y) =
®(x, y) holds onX x Y. Thus, on the so-callecanonical phase spacg = X x
Y=, the functionH : Z — R defined by

H(x,y*) = ®{(x, y*) € T(X) x I'(Y") (3.27)

is called thecanonical Hamiltoniarassociated withd.
Symmetrically, for a fixed € Y, the partial conjugate ab with respect tox is

qD;(X*’ y) =£§t{<)€ ’ -X*> - CD()C, )’)}
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If (-, y) € ['g(X,), andX} C X* is the range of the mappinB, ® : X, — X,
then the Legendre duality relation

P(x,y) + Pi(x, y) = (x, x7)

holds onX, x X7.

If the geometrical operatoh : X, — Y, is linear and its adjoint operator
A* 1 Y* — X* is onto, then the complementary Hamiltoniai : X x Y* — R
can be defined by

H(x, y*) = =PI (A™Y", Ax). (3.28)

DEFINITION 3. For a given probleni®ey), if there exists a Gateaux differenti-
able operaton\ : X — Y and an extended canonical functidne I'o(X) x T'o(Y)
such thatP (x) = ®(x, A(x)), then the functior. : Z = X x Y* — R definded

by
L(x,y") = (Ax); y*)— H(x,y") (3.29)

is called theextended Lagrangian formf (Pey) associated with\. It is called the
canonical Lagrangianf L € I'(X) x T'(Y*). O

Clearly, for any givenx € X, the extended Lagrangiali(x, -) € T'(Y*) is a
canonical function oy* and

P(x) = %X,;[ L(x,y") Vx € X.

Thus, for linearA : XX — Y, L defined by (3.29) is always a canonical Lagrangian
form. However, in geometrically nonlinear systems the convexity. 6f y*) :
X — R will depend on the operatak and the canonical dual variabjé.

A point (x, y*) € X x Y* is said to be a critical point of. if L is Gateaux-
differentiable aix, y*) and

D.L(x,y*) =0, DyL(x,y")=0.

It is easy to find out that the criticality conditiaR L (x, y*) = 0 is equivalent to
the following canonical Lagrange equations

AF(X)Y* = D @Y(x, 7),

A®) = Dy ®L(E, 7). (3.30)

DL(x,y")=0 = {
In global optimization, the following definitions are needed for the purpose of
studying the generalized Lagrange duality (see, Gao, 1998).

DEFINITION 4. LetL : Z — Rbe an arbitrary given function, ari, = X, x
Y* an open set itz.
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A point (x, y*) is said to be aight-saddle poinof L on Z,, if

L(x,y*) < L(x,y") < L(x,y) V(x,)") € Z,. (3.31)
A point (x, y*) is said to be deft-saddle poinbf L on Z,, if

L(x,y") > L(x,y") > L(x,y") V¥(x,y") € Z,. (3.32)
A point (x, y*) is said to be @ub-critical (ora~-critical) point of L on Z,, if

L%, y*) > L(x,5) < L(x, 7% V(x,y") € Z,. (3.33)
A point (x, y*) is said to be auper-critical (ora*-critical) point of L on Z,, if

L(x,y") < L(x,y") > L(x,5") V(x,y%) € Z,. (3.34)

In convex analysis, the right-saddle point is simply called the saddle point. By
the definitions of the extended differentials, the following results show the reason
why the names of the super- and sub-Lagrangians were introduced.

1. A point(x, y*) is a right-saddle point of on Z if and only if

0€d; L 7). 0e€dlL 7). (3.35)
2. A point (x, y*) is a sub-critical point of. on Z if and only if

0€d L 7)., 0e€d L ). (3.36)
3. A point (x, y*) is a super-critical point of. on Z if and only if

0edL(x,7"), 0e€d L, ). (3.37)

In geometrically linear systema\(: X — ¥ is linear), the inequalities (3.34)
are equivalent to following symmetrical canonical Hamilton forms:

AT € 0 H(E, 79, A€oy H(E, 7).

This is the definition of the so-callednomalous critical pointsintroduced by
Auchmuty in geometrically linear problems, which is a special case of the super-
critical points.

Let L : Z — R be a given arbitrary extended function, which is Gateaux
differentiable onz, = X, x Y¥* C Z. Two functions associated with(x, y*) can
be defined by

Px) = Stg. L(x,y") Vx € X, (3.38)
y*eya
PI(y") = staL(x,y*) Vy* € Y. (3.39)

The following lemma plays a key role in duality theory for global optimization.
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LEMMA 1. LetL(x, y*) be an arbitrary function, partially Gateaux differentiable
on an open subset, = X, x Y C X x Y*. If (x, y*) € X, x Y is one of the
(either right- or left-) saddle points, the super- or sub-critical pointsLofthen
(x, ¥y*) is a critical point of L on Z,.

Moreover, if P is Gateaux differentiable at, and P¢ is Gateaux differentiable
aty*, thenDP(x) =0, DP¢(y*) =0, and

P(X) = L(x,§") = P'(3"). (3.40)

The proof of this lemma can be found in Gao (1998b, 1999) in parametrical
variational analysis.

Any critical point of a Gateaux differentiable saddle-Lagrangian (resp. super-
Lagrangian) is a saddle-critical (resp. super-critical) point. Howevéx,if*) is
a saddle-critical (or super-critical) point @f, it does not follows that the exten-
ded LagrangiarnL is a saddle-Lagrangian (or super-Lagrangian) sihces not
necessary to be a canonical function.

Clearly, (x, y*) is a left-saddle (resp. sub-critical) critical pointbfif and only
if it is a right-saddle (resp. super-critical) point efL. In the following, we only
discuss the right and super-Lagrangians. Zet= X, x ¥* C X x Y* be an open
subset. In global optimization, the following statements are of important theoretical
value.

(S1) Under certain necessary and sufficient conditions, if

inf sup L(x, y") = sup inf L(x, y") (3.41)

xeX, y Ey* y ey*XE r

holds, then a statement of this type is calleshddle-minimax theoreand the pair
(x, y*) is called asaddle-minimax poimf L on Z,.
(S2) Under certain necessary and sufficient conditions if

inf sup L(x,y )— |nf sup L(x, y*). (3.42)

xeXr y *eyx ¥ xex,

A statement of this type is calledsaiper-minimax theorerand the pairx, y*) is
called asuper-minimax poinbf L on Z,..
(S3) Under certain conditions, a p&i, y*) € Z, exists such that

L(x,y") < L(x,y") 2 L(x,y9) (3.43)

holds for all(x, y*) € Z,. A statement of this type is calledsaiper-critical point
theorem

By the fact that the suprema bfix, y*) can be taken in either order 66, x %*,
the equality

sup sup L(x, y*) = sup supL(x, y*) (3.44)

XeX, y*elys y*eyr xeX,
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always holds. This fact is trivial in convex systems but important in global optim-
ization. A pair(x, y*) which maximized. on Z, is called a locabuper-maximum
pointof L on Z,.

In classical saddle Lagrange duality theory, the primal and dual functions asso-
ciated withL are defined by the saddle Lagrange dual transformation:

P(x) = sup L(x,y*) Vx e X, (3.45)
yrey*
Pi(y*) = inICL(x,y*) Vy* e Y*, (3.46)
X€

Theweak minimax duality

inf P(x) > sup PY(y*)

xeX yrey*
is always held for any functior. (x, y*). For saddle Lagrangian, the following
theorem is well-known (cf. e.g., Walk, 1989; Gao, 1999).

THEOREM1. LetL : X x ¥* — R be a saddle-Lagrangian such that the
functionsP : X — Rand P? : Y* — R are well-defined by (3.45) and (3.46),
respectively, and that the effective doma¥is = domP c X, ¥ = domP? C
Y* are not empty. Then thetrong saddle-minimax duality theorémthe form

inf P(x) = inf sup L(x,y*) = sup inf L(x,y*) = sup PY(y")
xeXk xexky*eyz yreyr ¥€Xa yreyr
(3.47)
holds.

In engineering mechanics, the primal feasible Xgtis called thekinetically
admissible spacehe dual feasible sef is referred as thetatically admissible

space In the case tha® (x, y) = W(y) — F(x) with W € I'(%) and F € ['(X),
the extended Lagrangian takes the form

L(x,y")=(A); y*) — W*(") — F(x). (3.48)
By the Fenchel transformation, for any givere X we have

P(x) = sup L(x, y*) = W¥(A(x)) — F(x) = W(A(x)) — F(x)
yreyx

for all W € I'o(Y.). The effective domain o is X; = {x € X,| A(x) €
Y.}. On the other hand, ii is a linear operator, then for any giveh € ¥*, the
Fenchel-Rockafellar dual function takes the form

PUy™) = Inf L(x, y*) = F'(A"Y") = W¥(y"). (349)

The effective domain oP? is ¥ = domP = {y* € Y| A*y* € X}
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However, in geometrically nonlinear systems, the dual funciiéand the dual
feasible set)’ will depend on the nonlinear operatar.

4. Bi-Duality Theory in Global Optimization

In this section, we study the bi-duality theory for general nonconvex systems. We
assume thaL : X, x ¥* — R is a given arbitrary function. We lex, < X, and
Y C Y* be two subsets such that

sup L(x, y*) < 400 Vx € X,
yieys

sup L(x, y*) < 400 Vy* e Y;.
xeXy

The super-critical point duality theorem proposed by Gao (1999) is also true for
global optimization problems.

THEOREM 2. Letthe Lagrangiarl. : X x ¥* — R be a given arbitrary function.
If there exists either a super-maximum paigt y*) € X, x ¥* C X x Y* such
that

max max L(x, y = L(x,y*) = max maxL(x v, (4.50)
xeXaq y*eY; yielys xeXa

or a super-minimax pointx, y*) € X, x Y* such that

min max L(x, y "y = L(x,y*) = min maxL(x, y"), (4.51)
X€Xq y*elY® y*eYs xeXa

then(x, y*) is a super-critical point of. on X, x Y.

Dually, if L is partially Gateaux differentiable on an open ¥, x Y* C
X x Y*, and(x, y*) is a super-critical point ofL on the open subsét, x Y C
X, x YX, then either the super-maximum theorem in the form

maxmaxL (x, y*) = L(x, y*) = maxmaxL(x, y*), (4.52)
xeXy peYy y*elYs xeX,

holds, or the super-minimax theorem in the form

min max L =1L = min maxL 453
min max (x,y") =L(x,y") = min ma (x, y") (4.53)
holds.

The proof of this theorem can be found in Gao (1999). This theorem plays an
important role in d.c. programming and dynamical systems. In particular,df
['(X) x I'(Y*), then we have the followinguper-Lagrangian duality theorem
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THEOREM 3. Let L € ['(X) x I'(¥*) be partially Gateaux differentiable on an
open setX, x Y* C X x Y*, and(x, y*) is a critical point of L on the open subset
X x Y& C X, x Yz, then either the super-maximum theorem in the form

sup sup L(x, y*) = L(x, ¥*) = sup sup L(x, y*) (4.54)
xeXk pelYs y*eyYr xeXq

holds, or the super-minimax theorem in the form

inf sup L(x,y*) =L(x,y") = in; sup L(x, y*) (4.55)
y*E *

xeX yreyr s X€Xq

holds.

Proof. SinceL e I'(X) x I'(Y¥*) is a super-critical function of¢ x Y*, then
its critical points must be the super-critical point &hx Y*. The theorem can be
easily proved by use of Theorem 2. O

For a given arbitrary functiod : Z, — R, we let

P(x) = sup L(x,y*) Vx € X,, (4.56)
yrelys

PY(y*) = supL(x,y*) Vy* € Yr (4.57)
xeXy

BothP : X — RandP?: Y* — R are generally nonconvex. Thus, the primal
and dual problems associated wittcan be proposed as

(Pexp) ©: P(x) — ext Vx € X, (4.58)
(PLy: PUY*) — ext Vy* e Y~ (4.59)

The problemg Pey) and (P4, are realisable if their effective domaing, and y*
are not empty. In classical convex optimization, the maximization problemisf
usually replaced by the minimization problem-e. However, this is not true in
global optimization, and in generdlfns) and(Ps,p are two different problems.

THEOREM 4 (Bi-duality theorem)Let L : X, x ¥ — R be a given arbitrary
function such thaP and P¢ are well-defined by (4.58) and (4.59) on the nonempty
open effective domairk, and ¥, respectively. Ifx, y*) € X x YI is a super-
critical point of L on the open domait, x Y¥; C X x Y*, then

P(x) = inf P(x) ifandonlyif inf PY(y*) = P¢(*); (4.60)
xeXyk yreYs

P(¥) = sup P(x) ifandonlyif sup P!(y*) = PI(5%). (4.61)
x€Xy yreys

Proof. This theorem follows from the combination of the Lemma 1 and
Theorem 2. O
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In the case thaL(x, y*) = (A(x) ; y*) — W*(y*) — F(x) is an extended
Lagrange form associated with a d.c. functiBx) = W(A(x)) — F(x), then the
dual function reads

PY(y*) = Fl(y*) — W*(y"), (4.62)

whereF¢ : Y* — R is the so-called\-dual functionof F defined by the following
A-dual transformation

Fl(y") = std(A(x) ; y*) — F(x)| Vx € X}. (4.63)

In geometrically linear systems, the statement (4.60) reduces to Auchmuty’s
anomalous duality theorem. In particular, if the primal function can be written as
P(x) = W(Ax) — F(x) With W € I'g(Y,) and F € I'¢(X,), then the effective
domain domP = X; = {x € X,| Ax € Y,}. The dual function

PY(y*) = FE(A*Y") — WH(y")

is also a d.c. function with effective domain daM = Y = {y* € Y| A*y* €

X.}. In this special case, the statement (4.60) is a more precise version of the
Toland’s double-min duality theorem. In convex Hamilton systems, the total action
P of the system is a d.c. functional (the difference of the total kinetic energy and
the total potential energy). Sinc® is not convex, the problem may have many
local extrema. In periodic dynamics, both local minima and local maxima are the
equilibrium states of the systems, and have to be considered simultaneously. As a
traditional minimization problem, the well-known least action principle is in fact a
misnomer. The bi-duality theory, however, gives a complete picture for this type of
problems.

5. Triality Theory in Fully Nonlinear Problems

The triality theory was originally proposed by the author (Gao, 1996, 1997, 1999)
from post-buckling problems in finite deformation theory, where the geometrical
operatorA : X — Y is a quadratic mapping (the right Cauchy-Green tensor).

In this section, we will generalize this interesting result into global optimization

problems. We assume that for any given nonconvex extended furetic — R,

there exists a general nonlinear operator X, — Y% and a canonical function

W € I'(Y) such that the canonical transformation can be written as

P(x)=W(AKX) —(x, c¢), ce X" (5.64)

SinceF (x) = (x , ¢) is a linear function, the HamiltoniaH (x, y*) = W*(y*) +
(x , c)isacanonical function oZ = X x Y* and the extended Lagrangian reads

L(x,y") = (A(); y") = WO —(x, o). (5.65)
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For a fixedy* € Y*, the convexity ofL(-, y*) : X — R depends om (x) and
y ey

LetZ, = X, x Y} C Z be the effective domain dof, and let£. C Z, be a
critical point set ofL, i.e.

Le={(x,y) € KXo x Yol SL(X, y*5x,5") =0 Y(x,y") € Xa x Y.}

For any given critical pointx, y*) € £, we letX, x % be its neighborhood such
that onX, x Y7, the pair(x, y*) is the only critical point ofL. The following result
is of fundamental importance in global optimization.

THEOREM 5 (Triality theorem).Let (x, y*) € £. be a critical point of L and
X, x Yra neighborhood ofx, y*).
I. Suppose thaW e r(ya) is convex. IfA(x) ; ¥*) is convex orX,, then

min maxL(x v =L(x, y") = max m|n L(x, y"). (5.66)
xeX, y*eyx *eYt x

However, if(A(x) ; y*) is concave or¥,, then either

min max L =1L = min maxL 5.67

min max (x,y") = L(x,y") = min ma (x, ¥, (5.67)
or

maxmax L(x, y*) = L(x, y*) = maxmaxL(x, y*). (5.68)

xeX, y*eyx y*eyYr xeX,

Il. Suppose thav € r(ya) is concave. IfA(x) ; y*)is concave ori,, then

max min L(x, y*) = L(x, y*) = min maxL(x, y*). (5.69)

xeX, y*elyr YREYE xeX,

However, if(A(x) ; y*) is convex orX,, then either

max min L(x, y*) = L(x, ¥*) = max m|n L(x, y"), (5.70)
xeX,y Ey, y eyr

or
min min L(x, y*) = L(x, y*) = min mln L(x,y"). (5.71)
xeX, y*eyx y*elYr x

Proof. For convexW (y), its Fenchel conjugat® ™ (y*) is also convex. IfA(x); y*)
is convex onX,, thenL € I'(X,) x F(y ) is a saddle function angk, y*) is a
saddle point ofL on X, x ¥*. Thus (5.66) follows from the saddle- Lagranglan du-
ality theorem. However, ifA(x) ; y*)is concave o1i,, thenL € (X, )xr(y ),
and (x, y*) is a super-critical pomt ol on X, x Y*. By the super-Lagrangian
duality theorem (Theorem 3), we have either (5.67) or (5.68).

Similarly for concaveW (y). O



CANONICAL DUAL TRANSFORMATION METHOD 149
SinceW e I'(Y,) is a canonical function, we always have
P(x) = ext{L(x,y")| y* € Y*} Vx € X;. (5.72)

On the other hand, for a given Gateaux differentiable geometrical mapyping
X. — Y., the criticality conditionD, L(x, y*) = 0 leads to the equilibrium
equation

Af(x)y* =c. (5.73)

If there exists a subspadg’ C Y such that for any* € Y and a given source
variablec € X*, the equation (5.73) can be solved for= x(y*), then by Gao-
Strang’s decomposition (x) = A,(x)x + A.(x), the dual functionP? : ¥* — R
can be written explicitly in the form

PU(y*) = stdL(x,y")| x € X} = —=G'(y") —W*(y") Vy* e ¥Y;, (5.74)
whereG? : Y* — R is the so-called pure complementary gap function, defined by
Gy = GEGM, ¥ = (MGG 5 ¥ (5.75)

For any given critical pointx, y*) € £., we haveG*(3*) = (x , ¢) —

(A(x(¥*)) ; ¥*). Thus, the Legendre duality relations among the canonical func-
tions W andW* lead to

PE) — P'G*) =0 V(& 7*) € L. (5.76)

This identity shows that there is no duality gap between the nonconvex function
P and its canonical dual functio”R?. Actually the duality gap, which exists in
classical duality theories, is now recovered by the complementary gap function
G(x,y").

THEOREM 6 (Tri-duality theorem) Suppose thaW € I'(Y,), (£, ¥*) € L. is a

critical point of L and X, x ¥ is a neighborhood ofx, y*). If (A(x) ; y*)is
convex orx,, then

P(X) = mg? P(x) ifandonlyif PIGF*) = m%x P4(y). (5.77)
xeXoy yreyr

However, if{A(x) ; y*)is concave or¥,, then

P(X) = m;p P(x) ifandonlyif PY(G*) = mi; P(y*); (5.78)
xeX, yrelyx

P(¥) = maxP(x) ifandonlyif PY(5*) = max P4 (y*). (5.79)
x€X, y*eyr

Proof. This is a special case of the triality theorem. O
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In numerical analysis of many engineering problems (such as finite deformation
theory and computational differential geometry), the nonlinear mapping¢ =
R" — Y = R™ is usually a symmetrical quadratic operator fri@hto R™

1 n
Ax) = —xTAx = Z Af-‘jxixj e R™", (5.80)
ij=1

whereA € R™" is the third order tensor
:{Af]}={A];l} l,_] :1, , n, k:l’ ,m

By the decompositiom\ (x) = A;(x)x + A.(x), the operatorg\, and its comple-
mentaryA . have the forms

1
A (X)x = ZA x4 M) = =3 ZA xix; ¢ €R™. (5.81)

i,j=1 i,j=1
The complementary gap function
1
G(x,y") = (—A.(x); Z Z Aux,x]yk = TH(y )x  (5.82)
k 1i,j=1

is a quadratic function of € R”. Its convexity depends on the Hessian matrix

H(") = [ZAl]yk} e R™.

In finite element analysis of large deformation mechanics problel(s;) is usu-
ally a sparse matrix. Ly’ C Y* be a convex set such that on which, the general-
ized inverseH ™ (y*) of H exists and satisfies

HO) =HOOHTGMHHG™, HTO) =HTOHHOHHT G, Vy* e Y.
Thus, the solution for the equilibrium equation (5.73) is

x =H"(y"e Vy* € Y.
In this case, the canonical dual function associated with the quadratic operator can
be written as

1
Py = —ECTH+(y*)c — W*(y"), (5.83)

which is, in general, a nonconvex function on the dual feasible spdce R™.
Very often, we have > m. This dimension reduction is of extremely important in
large scale nonconvex programming.
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SinceA : R" — R™ is a pure quadratic operator, we haéx) = —A.(x).
This leads taG (x, y*) = (A(x) ; y*). Inthis case, Theorems 5 and 6 reduce into
the triality theory proposed in finite deformation mechanics by Gao (1997, 1999).
Thus, for a giverv* € ¥, the quadratic gap functio@(-, y*) : X, — R is convex
if and only if the Hessian matrikd (y*) is positive-definite.

6. Applications

EXAMPLE 3. We first consider the geometrically linear nonconvex problems.
Recall the constrained minimization of Concave FunctioR’irdiscussed in Sec-
tion 2

(Prin) : )IC’Q]{Q f(x) st. x>0, Ax>beR", (6.84)
wheref € ['o(R") is a concave functiomy = {%ij} : R" — R™ is alinear operator
(matrix) in R™*". To solve this NP-hard problem, we let

Xa={xeX=R"x=20 Ya={yeY=R"l y=0}.

The feasible seX;

Xi={xeR"'" x>0, Ax >b}
is a convex subset IR". By letting

Fx) =—=f() +dx,(), W) =1y, ().
the extended problem can be written as

P(x) = dy,(Ax) + f(x) — dx,(x) — min Vx € R".

Sincef € I'(R"), the extended functio® : R” — R is indeed a d.c. function.
For the convex functio (y) = 1y, (), its Fenchel conjugate can be computed
as

Wi = sup{(y; y*) — W(y)} =supy; y*)
yeR™ y=b
= (b y)+dy: (") Vy* eR",
where
Yo =" eR" y* <0}

is a negative cone iR™. Then, the extended Lagrangian associated with this
nonconvex optimization with inequality constraint reads

Lx,y") = (Ax —b; y") = dy: (") + f(x) = L, (). (6.85)
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Clearly,L : R" x R — R is a super-Lagrangian. Its effective domain
Zy=XaxYr={x,y)eR"xR"| x>0, y" <0}

is a convex set ilR" x R™. On Z,, the criticality conditionDL (x, y*) = 0 will
lead to a so-callethi-complementarity problertsee Gao, 1998a). For any given
y* € Y* the dual function ofP can be obtained by the super-Lagrangian dual
transformation

PY(y*) = Sup L(x. Y =—fU(=AY) = (b y) Yy e Y, (6.86)
X€E n
\/Avherefb e ['(R") is the Fenchel sub-conjugate of the concave functior
I'(R™"). Thus, the dual problem associated with;,) is a convex minimization
problem

(Pl PUy*) = —f (=A*y*) — (b; y*) — min st. y* <0eR".
(6.87)

By the fact that the Fenchel conjugate of a nonsmooth function could be smooth,
the solution of this convex dual problem is much easier than the primal one. Since
L(x, y*) is a super-Lagrangian dR" x R™, the bi-duality theorem holds dX, x
Yo

In particular, if the inequality constrailhx > b in (Pyin) is replaced by
the equality constrainhx = b, theny* = R™. In this case, the dual problem
(f/’gm) of the constrained, nonconvex/nonsmooth primal problePpi,) in R”
is a unconstrained, smooth convex minimization probleriR’ih Very often, we
havern > m. This dimension reduction technique is extremely important in large
scale nonlinear programming in finite element analysis (see Gao, 1988b). More
interesting examples can be found in Gao (1999). a

EXAMPLE 4. As a special case, let us consider the constrained extremum prob-
lem of a given concave function in one-dimension:

1 _
(Pext) :  f(x) =cx — Eax2 —ext Vx € I = [x,, xp] (6.88)

wherea > 0, ¢ € R are given constraints. We assume thab < x, < 0 < x;, <
00. Since f(x) is strictly concave on the open domdin= (x,, x;), the minima
are attained only on the boundary Kfi.e.
e[inf ]f(X) = min{f(x,), f(xp)} > —o0.
XE|[Xq,Xp
On the other hand, if the critical poifit= c¢/a of f(x) isin I = (x,, x;), then the
maximization problem{#mnay is realizable and

SUpf (x) = maxf (x) = £(=).

xel xel
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There are many ways to set this problem within our framework, but each of
them will lead to a different dual problem. Here we %t= R, X, = [x,, x,] and
A =1, then

y=Ax=xeY =R

Thus, the range of the mapping: X, - Y = Ris Y, = [x,, xp]. Let F(x) =
—f(x)and

0 ifyeY,,
+oo ifyé¢Y,.

It is not difficult to check thatV : Y — R U {+o0} is convex. Orly,, W is finite
and differentiable. Thus, the primal feasible set can be defined by

W(y) = {

X ={x € Xu| Ax =x € Yo} = [x4, X5].

The constrained primal problert®.yy is then equivalent to the unconstrained
nonconvex extended global optimization problem

(Pext) : P(x) =W(Ax) — F(x) — ext Vx eR. (6.89)

Since F(x) = — f(x) is strictly convex and differentiable o, = [x,, x],
and

xX*=DF(x)=ax —ce X, =[xa—c,xpa—c]C X" =R

is invertible, the Legendre conjugai& : X — R can easily be obtained as
() = maxex” — F(0) = — (" + 0)?
X _xexa XX X = 2a X C) .

By the Legendre-Fenchel transformation, the conjugate of the nonsmooth func-
tion W can be obtained as

xpy* if y* >0,
W*(y*) = suplyy” — W(y)} = maxyy* = { 0 if y* =0,
yeY Y€Ya -xay* if y* < 0.

It is convex and differentiable oy = ¥* = R.
On X, x ¥ = [x,,x,] x R, the extended Lagrangian associated with the
problem(Pey) is well-defined by

L(x,y") = y"Ax = W' (") — F(x)

xy* — xpy* — 2ax?+cex if y* >0,
:{ YTy T3 Y (6.90)

xy* —x,y* — %ax2 +cx ify
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Since bothWw* and P are convex,L(x, y*) is a super-critical point function. If
x € X = [x,, xp], then

P(x) = sup L(x, y").
yiey:

On the other hand, for any* in the dual feasible set
Yo =" eYo=R| A"y =y" € X} = [x,a — ¢, xpa — ¢,
the dual function is obtained by
PY(y*) = supL(x,y*) = SUpAxy* — F(x)} — W*(y")
x€Xy xeR
= F*(A™Y") = W* ("),
where

1
F*(A*y*) = sup{Axy* — F(x)} = suplx(y* +¢) — ~ax?}
xeXy xeR 2

(R = FOY)
Thus, the dual actio®? is well defined oriy* by

i(y* + )% —xpy* if y* >0,

Pi(y*) = %cz if y* =0, (6.91)

(" + c)? — x,y* if y* <O.
This is a double-well function oR (see Figure 5). The dual problem

dy .
(j)ext :

PY(y*) — ext Vy* e Y*
is a convex optimization problem on either
YT =0"eYl ¥y >0 or YT ={" ey y <O

In n-dimensional problems, this dual problem is much easier than the primal prob-
lem. The criticality condition of £<,) leads to

— | xpa—c ify* >0,
xqa—c if y* <O.

It is easy to check that the following duality theorems hold:
maxP(x) = max P (y*),
yreys

xeXk

min P(x) = min P4(y"),

+ s+
xeXy y*e¥Ys
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-3 2 -1 0 1 2
z, Yy
Figure 5. Bi-duality in constrained nonconvex optimization.

whereX;” = {x e Rl 0 < x < x}, X; = {x € R| x, < x < 0}. The graphs

of P(x) and P4(y*) are shown in Fig. 5. If = [0, x,], then the primal minim-
ization problem(#in¢) is equivalent to a nonconvex variational inequality problem
(or unilateral variational problem). In multi-dimensional systems, traditional direct
approaches are very difficult. However, the super-Lagrange dual pratsmis

a strictly convex minimization problem di**, which is substantially easier than
the primal one.

EXAMPLE 5. We now illustrate the application of the interesting tri-duality the-
ory for solving the nonconvex optimization problem (2.25)

1 1
P(x) = 5a(§||Ax||2 —w?—x"c — stavxeR" (6.92)

The Euler equation associated with this nonconvex stationary problem is a nonlin-
ear algebraic equation iR"

1 i
a(EIIAXII —wCx =c,

whereC = ATA = CT e R™. We are interested in finding all the critical points
of P.LetX = R" = X*, andA : R" — Y = R a quadratic operator

1 2 1 T
y =AW =SlAx]"—p=5x" Cx —p.

SinceF(x) = (x , ¢) = xTc is a linear function orR”, the admissible space
X, = X = R". By the fact thatv* = DF(x) = ¢, the range for the canonical
mappingDF : X — X* = R is a hyperplane iiR", i.e.

X ={x*eR" x*=c}.

The feasible set for the primal problemXg, = {x € X,| A(x) € Y¥,} =R".
By the fact thatc” Cx > 0 Vx € X, = X = R", the range for the geometrical
mappingA : X, — R is a closed convex set R

Ya={yeRl y>2—puyCcYy=R
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On the admissible subs&t, ¢ ¥ = R, the canonical functioiW (y) = %ayz is
quadratic. The range for the constitutive mappd@ : ¥, — Y* = Ris also a
closed convex set iR

Yr={y" eR| y* > —au}.

OnY;, the Legendre conjugate &f is also strictly convex
1
W*(y*) = Ea‘ly*z, (6.93)

and the Legendre duality relations hold Hp x %*.
OonX, x Y =R" x R, the extended Lagrangian in this case reads

1 1
L(x,y*) = Ey*xTCx —uy* — Ea_ly*2 —xTe. (6.94)

It is easy to check that the dual function associated with

1 1
Pi(y*) = E(y*rlcTCc -y - Zy*z,

The dual Euler-Lagrange equation is an algebraic equatié in

1
(4 a ty)y? = 502, o?=cTce. (6.95)
SinceC € R™ is positive-definite, this equation holds only &tj. For a given
parametern andc € R”, this dual equation has at most three real rogtse
¥, k=1,2,3, which leads to the primal solution

x =y;Che, k=1,2,3.
By Lemma 1 we know that eadb,, y;) is a critical point ofL and
P(xp) = L(xi, y}) = PY(y}), k=123

In the case ofi = 1, the graphs ofP and P? are shown in Figure 6. It was
proved in Gao (1998b) that ji < u. = 1.5(c/a)??® the problem has only one
global minimizer (see Figure 6(a)). Howeveruif> u., the dual Euler-Lagrange
Equation (6.95) has three root$ > 0 > y; > y3, corresponding to three critical
points of P¢ (see Figure 6(b)). Then; is a global maximizer o4, x; = o/y}
is a global minimizer ofP, P? takes local minimum and local maximum values at
y; andy3, respectivelyx, = o/yj is a local maximizer o, while x3 = o/y3 is
a local minimizer.

The Lagrangian associated with this double-well energy is

* 12* 1
L(x,y)=§xy _(Z

Itis a saddle function fop* > 0. If y* < O, itis a super-critical point function (see
Figure 7).

Y2+ py*) — yrx.
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Figure 6. Double-well energy? (x) (solid lines) and its duaP?(y*) (dashed lines).

\ o
I I S

Figure 7. Lagrangian for the double-well energy in the Example 5.

7. Concluding Remarks

The concept of duality is one of the most successful ideas in modern optimization.
The inner beauty of duality theory owes much to the fact that the nature was origin-
ally created in a splendid harmonious way. By the fact that the canonical physical
variables appear always in pairs, the canonical dual transformation method can be
used to solve many problems in natural systems. The associated extended Lagrange
duality and triality theories have profound computational impacts. Compared with
the traditional direct methods in global optimization problems, the main advantages
of the canonical dual transformation method can be listed as the following.

1. Provides powerful and efficient primal-dual alternative approaches;

2. Converts nonsmooth constrained problems into smooth unconstrained dual

problems;

3. Reduces the dimensions in nonlinear programming.

For any given nonlinear problem, as long as there exists a geometrical operator
A such that the tri-canonical forms can be characterized correctly, the canon-
ical dual transformation method and associated duality and triality principles can
be used to establish nice theoretical results and to develop powerful alternative
algorithms for robust computations. For a given nonlinear operatoy and asso-
ciated canonical dual variable € Y, the extended Lagrangidi(-, y*) : X, —
R may not be a canonical function ofe X,. In this case, the so-callesquential
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canonical dual transformatigrproposed by Gao (1999) in one-dimensional func-
tional spaces, can be used to construbtgh order canonical Lagrangiai,, for
solving problems with multi-well cost functions.
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