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Abstract. This paper presents, within a unified framework, a potentially powerful canonical dual
transformation method and associated generalized duality theory in nonsmooth global optimization.
It is shown that by the use of this method, many nonsmooth/nonconvex constrained primal prob-
lems inRn can be reformulated into certain smooth/convex unconstrained dual problems inRm
with m 6 n and without duality gap, and some NP-hard concave minimization problems can be
transformed into unconstrained convex minimization dual problems. The extended Lagrange duality
principles proposed recently in finite deformation theory are generalized suitable for solving a large
class of nonconvex and nonsmooth problems. The very interesting generalized triality theory can
be used to establish nice theoretical results and to develop efficient alternative algorithms for robust
computations.
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1. Introduction

The aim of this paper is to develop a powerful method and general theory for
solving the following general nonconvex and nonsmooth extremum problem

(P ext) : P(x) = 8(x,3(x))→ extremum ∀x ∈ X,

whereX is a locally convex topological vector space (l.c.s.),P : X → R̄ =
R ∪ {−∞} ∪ {+∞} is a nonconvex and nonsmooth extended function with the
non-empty effective domain

Xk = domP = {x ∈ X| |P(x)| < +∞}.
The operator3 : X → Y is a continuous, generally nonlinear, mapping fromX
to another l.c.s.Y, and8 : X × Y → R̄ is an extended function. Problem(Pext)

may have many locally extremum (either minimum or maximum) solutions, and
it represents a generalglobal optimizationproblem. It was shown in Gao (1999)
∗ This paper is dedicated to the memory of Professor P.D. Panagiotopoulos
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that this class of problems covers a great variety of situations including constrained
nonconvex variational analysis,d.c. programming, i.e. nonconvex problems of d.c.
functions (difference of convex functions), variational inequality, complementarity
problems, network problems and nonconvex dynamical systems and much more.

In the history of science, mathematics and mechanics have been always com-
plementary partners. Starting from the pioneering work of Moreau (1968) in a
frictional contact mechanics problem, where the notions of the super-potential and
subdifferential were originally introduced, the subject of non-smooth/non-convex
global optimization has experienced significant development during the last three
decades. Many problems arising in natural systems (such as engineering mechan-
ics, chemical reactions, network flows and mathematical economics, etc.) require
the considerations of nonconvexity and nondifferentiablity for their mathematical
modeling and the cost functions. The terminologyNon-Smooth Mechanicswas
formally proposed by Moreau, Panagiotopoulos and Strang (1988). Several mono-
graphs have documented the basic theory, methods, algorithms and applications
of nonsmooth/nonconvex variational analysis and global optimizations (cf., e.g.,
Panagiotopoulos, 1985; Horst and Pardalos, 1995; Dem’yanov et al., 1996; Mis-
takidis and Stavroulakis, 1998; Motreanu and Panagiotopoulos, 1999 and Gao et
al., 2000). Generally speaking, traditional direct methods for solving nonsmooth
and nonconvex problems are usually very difficult, or even impossible. The so-
called relaxation methods can be used mainly for finding global optimal solutions
(global minimizer of maximizer). However, in unilateral post-buckling analysis of
nonlinear beam theory, it was shown by Gao (1998b) that the solution of actual
buckling state has to be a local minimizer. In phase transitions and nonconvex
dynamical programming, local extrema usually play an important role in under-
standing the physical mechanism of systems. In nonsmooth global optimization
problems, more recent trends consist of the so-calledreformulationandnonlinear
rescaling techniques(cf. e.g., Fukushima and Qi, 1999; Polyak and Griva, 2000).
The classical Lagrange duality theory is the main tool used in these methods.

Duality is a fundamental concept that underlies almost all natural phenomena.
The duality methods in classical optimization possess beautiful theoretical prop-
erties, potentially powerful alternative performances and pleasing relationships to
many other fields (see Walk, 1989; Wright, 1996). A self-contained comprehensive
presentation of the mathematical theory in general nonconvex, nonsmooth systems
was given recently by Gao (1999). In global optimization, duality theory falls
principally into three categories:

(1) the classical saddle Lagrange (minimax) duality in convex problems,
(2) the nice super-Lagrangian bi-duality in geometrically linear systems and
(3) the interesting triality and multi-duality in general nonconvex canonical sys-

tems.
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In thegeometrically linear systems, where3 : X→ Y is a linear operator and
8 : X×Y→ R̄ is acanonical function(i.e.8(x, y∗) is either convex or concave in
each of its variables), the duality has been studied substantially during the last thirty
years for both convex and nonconvex canonical systems. In the case thatP : X→
R̄ is convex, its dual function can be well-determined by the so-called Rockafellar

dual transformation:P d(y∗) = 8∗(−3∗y∗, y∗), where8∗ : X∗ × Y∗ →↼

R=
R ∪ {−∞} is the well-known Fenchel-Rockafellar conjugate function of8. The
Fenchel-Rockafellar duality is essentially equivalent to the classical saddle Lag-
range duality, which yields a so-called mono-duality, i.e., each minimum primal
problem possesses a unique maximum dual problem and infP(x) = supP d(y∗)
(see Gao, 1999). During the last decade, the so-calledprimal-dual interior point
methodhas emerged as the most important and efficient revolutionary technique
in mathematical programming (cf. e.g. Wright, 1997 for linear programming, Gay
et al., 1998 and Wright, 1998 for nonconvex nonlinear programming). Actually,
the primal-dual methods and ideas were studied originally by engineers at the
beginning of this century (cf. e.g., Maier et al., 2000; Gao, 1999). It is well-known
in engineering structural limit analysis that the direct approaches for solving min-
imum potential energy (primal problem) can only provide upper bounds of the
so-called collapse loading factor. On the other hand, the maximum complementary
energy principle (dual problem) and methods give the lower bound solutions. In
safety analysis of engineering structures, the primal-dual methods provide defin-
itely powerful and efficient tolls for solving nonsmooth, nonlinear problems (cf.
e.g., Maier, 1969; Casciaro and Cascini, 1982; Gao, 1988a,b, 1999). The recent
article by Maieret al (2000) serves as an excellent survey on the developments for
applications of mathematical programming in engineering structural mechanics.
Dual to the interior-point methods, the so-calledpan-penalty finite element pro-
grammingdeveloped by Gao (1988b) is essentially aprimal-dual exterior-point
method.It was proved that in rigid-perfectly plastic limit analysis, the exterior
penalty functional and the associated perturbation method possess a wonderful
physical meaning, which leads to an efficient technique of dimension reduction in
nonlinear mixed finite element programming by use of the saddle-Lagrange duality
theory (Gao, 1988b). However, if the primal functionP(x) is nonconvex, there
exists aduality gapbetween the primal problem(Pinf) and the Fenchel-Rockafellar
dual problem(P d

sup), i.e. infP(x) > supP d(y∗). In this sense, the well-developed
saddle-Lagrange duality and the Fenchel-Rockafellar duality can be used mainly
for convex problems.

The duality for nonconvex minimization was first studied by Toland (1978,

1979) for d.c. functions:P(x) = W(3x)−F(x), whereW : Y→⇀

R:= R∪{+∞}
andF : X →⇀

R are two convex functions. The d.c. optimization problems arise
naturally from many applications in engineering, economics and other sciences.
The generalizations of Toland’s duality theory were made by Auchmuty (1983–
1997) to geometrically linear nonconvex variational analysis. It was shown that the
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Toland’s double-min duality for d.c. programming is a special case of the so-called
anomalous dual problems. As a class of typical nonconvex global optimization
problems, a detailed survey article on the theory, methods and algorithms of the d.c.
programming was given by Tuy (1995). During last three decades several important
duality concepts have been developed as studied for nonconvex optimization (cf.
e.g., Ekeland, 1977; Crouzeix, 1981; Hiriart-Urruty, 1985, Penot and Volle, 1990;
Singer, 1986-98; Thach et al., 1993-96; Tuy, 1991, 1995 and Rockafellar and Wets,
1997). However, it was tradition in global optimization that the primal problem is
usually considered as a global minimization problem over a feasible set. This tradi-
tion obscured our sight and thus, in d.c. programming, only the double-min duality
theory was studied. In nonconvex problems, the local maximizers play important
roles in phase transition, unilateral bifurcations and chaotic dynamics.

Duality theory in geometrically nonlinear systems was originally studied by
Gao and Strang (1989) in large deformation variational/boundary value problems
governed by nonsmooth constitutive laws, where the primal functionP(x) =
W(3(x)) − F(x) represents the total potential of the system,W(y) andF(x) are
respectively the internal and external energies. In finite deformation field theory,
the nonlinear operator3 is usually quadratic. In order to recover the duality gap
in traditional Fenchel-Rockafellar duality theory, they introduced a so-calledcom-
plementary gap function,which leads to a generalized complementary variational
principle and a nonlinear Lagrange duality theory infully nonlinear variational
problems. They proved that if this complementary gap function possesses a positive
sign, the generalized complementary energyL(x, y∗) is a saddle functional. Their
systematical works on duality theory lead to a unified framework in applied math-
ematics (see Strang, 1986) and infully nonlinear canonical systems(see Gao et al.,
1989–1999). Recently, in the study of the post-buckling analysis of nonlinear beam
theory, it was discovered by Gao (1996, 1997, 1998b) that for convexW(y) and
quadratic3, if the gap function is negative,L(x, y∗) is a so-calledsuper-critical
point functional, and a very interesting tri-duality theory was proposed for quad-
ratic operator3(x). A comprehensive study on duality principles in nonsmooth
and nonconvex systems is recently given by Gao (1999).

The aim of this article is to generalize the author’s previous results on non-
convex variational systems into nonsmooth global optimization problems suitable
for arbitrary nonlinear operator3. Actually, the key idea of the so-called canon-
ical dual transformation method is to choose a certain nonlinear operator3 such
that8 : X × Y → R̄ is a canonical function. Thus, theperfect duality prin-
ciples (without duality gap) can be easily formulated by the classical Legendre
transformation. The rest of this paper is divided into five main sections. The next
section set up the notation used in the paper and describes the problems. A general
framework in fully nonlinear, nonsmooth systems is discussed. Section 3 presents
an extended Lagrangian duality theory in general global optimization. The critical
points in fully nonlinear systems are classified. Section 4 is devoted mainly to
the super-Lagrange duality theory. The nice bi-duality proposed in geometrically
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linear systems and d.c. programming is generalized to arbitrary functionL(x, y∗).
Section 5 discusses the triality in fully nonlinear systems. The very interesting
triality theory is generalized for general geometrically nonlinear operator3 and
are illustrated by quadratic operators in global optimization. The last two sections
present applications and concluding remarks.

2. Framework of Canonical Systems and Classification

LetX andX∗ be two locally convex topological real linear spaces, finite- or infinite
dimensional, placed in separating duality by a bilinear form〈·, ·〉 : X×X∗ → R.
For a given extended real-valued functionP : X→ R̄ = R ∪ {−∞} ∪ {+∞}, the
sub- and super-differentials ofP at x̄ ∈ X are defined by

∂−P(x̄) = {x̄∗ ∈ X∗|P(x)− P(x̄) > 〈x̄∗, x − x̄〉 ∀x ∈ X},

∂+P(x̄) = {x̄∗ ∈ X∗|P(x)− P(x̄) 6 〈x̄∗, x − x̄〉 ∀x ∈ X},
respectively. Clearly, we always have∂+P = −∂−(−P). In convex analysis, it is
convention that∂− is simply written as∂. In this paper,∂ stands for either∂− or
∂+, i.e.

∂ = {∂−, ∂+}.
If P is smooth, Gâteaux-differentiable atx̄ ∈ Xa ⊂ X, then

∂P (x̄) = ∂−P(x̄) = ∂+P(x̄) = {DP(x̄)},
whereDP : Xa → X∗ denotes the Gâteaux derivative ofP at x̄. The following
notations and definitions, used in Gao (1999), will be of convenience in global
optimization.

DEFINITION 1. The set of functionsP : X → R̄ which are either convex or
concave is denoted by0(X). In particular, let0̌(X) denote the subset of functions
P ∈ 0(X)which are convex and̂0(X) the subset ofP ∈ 0(X)which are concave.

The canonical function space0G(Xa) is a subset of functionsP ∈ 0(Xa)

which are Gâteaux differentiable onXa ⊂ X.
The extended canonical function space00(X) is a subset of functionsP ∈

0(X) which are either convex, lower semicontinuous or concave, upper semicon-
tinuous, and ifP takes the values±∞, thenP is identically equal to±∞. 2

By the Legendre-Fenchel transformation, thesuper-conjugate functionof an
extended functionP : X→ R̄ is defined by

P ](x∗) = sup
x∈X
{〈x, x∗〉 − P(x)}.
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By the theory of convex analysis,P ] : X∗ →⇀

R:= R∪{+∞} is always convex and
lower semicontinuous, i.e.P ] ∈ 0̌0(X

∗). Dually, thesub-conjugate functionof P ,
defined by

P [(x∗) = inf
x∈X
{〈x, x∗〉 − P(x)},

is always concave and upper semicontinuous, i.e.P [ ∈ 0̂0(X
∗), andP [ = −P ].

Both the super- and sub-conjugates are called Fenchel conjugate functions and we
write P ∗ = {P [, P ]}. Thus the extended Fenchel transformation can be written as

P ∗(x∗) = ext
x∈X {〈x, x∗〉 − P(x)}. (2.1)

Clearly, ifP ∈ 00(X), we have the Fenchel equivalent relations, namely,

x∗ ∈ ∂P (x) ⇔ x ∈ ∂P ∗(x∗) ⇔ P(x)+ P ∗(x∗) = 〈x , x∗〉. (2.2)

The pair(x, x∗) is called theFenchel duality paironX×X∗ if and only if equation
(2.2) holds onX×X∗.

The conjugate pair(x, x∗) is called theLegendre duality pairon Xa ×X∗a ⊂
X×X∗ if and only if the equivelant relations

x∗ = DP(x) ⇔ x = DP ∗(x∗) ⇔ P(x)+ P ∗(x∗) = 〈x, x∗〉 (2.3)

hold onXa ×X∗a.
Let (Y,Y∗) be an another pair of locally convex topological real linear spaces

paired in separating duality by the second bilinear form〈· ; ·〉 : Y×Y∗ → R. The
so-calledgeometrical operator3 : X→ Y is a continuous, Gâteaux differentiable
operator such that for any givenx ∈ Xa ⊂ X, there exists ay ∈ Ya ⊂ Y satisfying
thegeometrical equation

y = 3(x).
The directional derivative ofy at x̄ in the directionx ∈ X is then definded by

δy(x̄; x) := lim
θ→0+

y(x̄ + θx)− y(x̄)
θ

= 3t(x̄)x, (2.4)

where3t(x̄) = D3(x̄) denotes the Gâteaux derivative of the operator3 at x̄. For
a giveny∗ ∈ Y∗, `(x) = 〈3(x) ; y∗〉 is a real-valued function ofx on X. Its
Gâteaux derivative at̄x ∈ Xa in the directionx ∈ X reads

δ`(x̄; x) = 〈3t(x̄)x ; y∗〉 = 〈x , 3∗t (x̄)y∗〉,
where3∗t (x̄) : Y∗ → X∗ is the adjoint operator of3t associated with the two
bilinear forms.

Let8 : X×Y→ R̄ be an extended function such that

P(x) = 8(x,3(x)).
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If 8 : X×Y→ R̄ is an extended canonical function, i.e.8 ∈ 00(X)×00(Y), the
duality relations between the paired spaces(X,X∗) and(Y,Y∗) can be written as

x∗ ∈ ∂x8(x, y), y∗ ∈ ∂y8(x, y). (2.5)

On the product spaceXa × Ya ⊂ X × Y, if the canonical function8(x, y) is
finite and Gâteaux differentiable such that the feasible spaceXk can be written as

Xk = {x ∈ Xa| 3(x) ∈ Ya}, (2.6)

then onXk, the critical condition

δP (x̄; x) = 〈x , DP (x̄)〉 = 〈x , Dx8(x̄,3(x̄))〉 +
〈3t(x̄)x ; Dy8(x̄,3(x̄))〉 = 0 ∀x ∈ Xx

leads to the Euler equation:

Dx8(x̄,3(x̄))+3∗t (x̄)Dy8(x̄,3(x̄)) = 0, (2.7)

whereDx8 andDy8 denote the partial Gâteaux derivatives of8 with respect to
x andy, respectively. Since8 ∈ 0G(Xa) × 0G(Ya) is a canonical function, the
Gâteaux derivativeD8 : Xa×Ya → X∗a×Y∗a ⊂ X∗×Y∗ is a monotone mapping,
i.e. there exists a pair(x̄∗, ȳ∗) ∈ X∗ × Y∗ such that

−x̄∗ = Dx8(x̄,3(x̄)), ȳ∗ = Dy8(x̄,3(x̄)). (2.8)

Then the so-calledvirtual work principle

δ`(x̄; x) = 〈3t(x̄)x ; y∗〉 = 〈x , 3∗t (x̄)y∗〉 = 〈x , x̄∗〉 ∀x ∈ Xk (2.9)

leads to the so-calledbalance (or equilibrium) equation

x̄∗ = 3∗t (x̄)ȳ∗, (2.10)

which linearly depends on the dual variableȳ∗.
In geometrically linear systems, where3 = 3t , the values of the two bilinear

〈· , ·〉 and〈· ; ·〉 are equal, i.e.

〈ȳ ; ȳ∗〉 = 〈3x̄ ; ȳ∗〉 = 〈x̄ , 3∗ȳ∗〉 = 〈x̄ , x̄∗〉.
However, in geometrically nonlinear systems3 6= 3t , and the following operator
decomposition is introduced by Gao and Strang (1989)

3(x) = 3t(x)x +3c(x), (2.11)

where3c : X→ Y is called thecomplementary operatorof the Gâteaux derivative
operator3t , which plays a key role in nonconvex duality theory. Thus, there exists
a gap between the two bilinear forms, i.e.

〈3(x̄) ; ȳ∗〉 = 〈x̄ , 3∗t (x̄)ȳ∗〉 −G(x̄, ȳ∗) = 〈x̄ , x̄∗〉 −G(x̄, ȳ∗), (2.12)
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Figure 1. Framework in fully nonlinear systems.

whereG : X× Y∗ → R is so-calledcomplementary gap function, defined by

G(x, y∗) = 〈−3c(x) ; y∗〉 : X×Y∗ → R. (2.13)

This function was first introduced by Gao and Strang (1989) in finite deformation
theory, which plays a key role in nonconvex variational problems.

The following classification for the global optimization problems was given by
Gao (1998, 1999).

DEFINITION 2. Suppose that for a given problem(Pext), the geometrical op-
erator3 : X → Y can be chosen in such a way thatP(x) = 8(x,3(x)),
8 ∈ 0G(Xa)× 0G(Ya) andXk = {x ∈ Xa| 3(x) ∈ Ya}. Then

(1) the transformation{P ;Xk} → {8;Xa ×Ya} is called thecanonical trans-
formation, and8 : Xa ×Ya → R is called thecanonical function associated with
3;

(2) the problem(Pext) is calledgeometrically nonlinear (resp. linear)if 3 :
X→ Y is nonlinear (resp. linear); it is calledphysically nonlinear(resp. linear) if
the duality mappingD8 : Xa × Ya → X∗a × Y∗a is nonlinear (resp. linear); it is
calledfully nonlinearif it is both geometrically and physically nonlinear. �

The canonical transformation plays a fundamental role in duality theory of
global optimization. By this definition, the governing Equation (2.7) for fully non-
linear problems can be written in thetri-canonical forms, namely,

(1) geometrical equation:y = 3(x),
(2) physical relations: y∗ ∈ ∂y8(x, y), −x∗ ∈ ∂x8(x, y),
(3) balance equation: x∗ = 3∗t (x)y∗.

(2.14)

A framework for the fully nonlinear system is shown in Figure 1. Extensive
illustrations of the canonical transformation and the tri-canonical forms in math-
ematical physics and variational analysis were given in the monograph by Gao
(1999).

Very often, the extended canonical function8 can be written in the form

8(x, y) = W(y)− F(x), F ∈ 0(X), W ∈ 0(Y).
The duality relations (2.5) in this special case take the forms

x∗ ∈ ∂F (x), y∗ ∈ ∂W(y).
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If F ∈ 0G(Xa) andW ∈ 0G(Ya) are Gâteaux differentiable, the Euler equation
(2.7) reads

3∗t (x̄)DW(3(x̄))−DF(x̄) = 0.

If 3 : X → Y is linear, andW : Y → R is quadratic such thatDW = Cy,
whereC : Y → Y∗ is a linear operator, then the governing equations for linear
system can be written as

3∗C3x = Ax = x∗.
For conservative systems, the operatorA = 3∗C3 is usually symmetric. In static
systems,C is usually positive-definite and the associated total potentialP is con-
vex. However, in dynamical systems,C is indefinite andP is called the total action,
which is usually a d.c. function in convex Hamilton systems.

To demonstrate how the above scheme fits in with the finite dimensional global
optimization, we list some examples in nonlinear programming.

EXAMPLE 1. Geometrically linear nonsmooth constrained global minimiza-
tion in Rn.

We first consider the following global minimization problem

(Pmin) minf (x) s.t. x ∈ Xk ⊂ Rn, (2.15)

where the primal feasible spaceXk is a nonempty convex subset inRn,

Xk = {x ∈ Xa| 3x ∈ Ya},
Xa ⊂ Rn, Ya ⊂ Rm are two convex subsets,f ∈ 00(Xa) is a given canonical
function;3 = {λij } : Rn→ Rm is a linear operator (matrix) inRm×n.

To reformulate this general nonsmooth global minimization problem in the geo-
metrically linear canonical model form, we letX = X∗ = Rn, Y = Y∗ = Rm,
with the standard coordinatewise partial ordering and bilinear forms

〈3x ; y∗〉 = (3x)T y∗ = xT (3T y∗) = 〈x , 3∗y∗〉 =
n∑
i=1

m∑
j=1

xiλij y
∗
j .

Then, the adjoint of3 associated with these standard bilinear forms is simply
3∗ = 3T ∈ Rn×m. For a given convex setXa, its indicatorIXa

(x) = {0( if x ∈
Xa), +∞( if x /∈ Xa)} is a convex, lower semicontinuous function. The two
canonical functionsF ∈ 00(X) andW ∈ 0̌(Y) can be defined by

F(x) = −f (x)− IXa
(x), W(y) = IYa (y).
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Clearly, the effective domains domF = Xa ⊂ Rn and domW = Ya ⊂ Rm are
nonempty and convex. Thus, the constrained problem (2.15) can be written in the
extended (unconstrained) form

P(x) = IYa (3x)+ f (x)+ IXa
(x) → min ∀x ∈ Rn. (2.16)

Its effective domain domP = Xk, and the conditionx ∈ Xk is called theimplicit
constraint.

The extended primal problem (2.16) covers many important special cases in
constrained optimization problems.

Case I. Iff ∈ 0̌G(Xa), Xa = Rn andYa = {y ∈ Rm| gk(y) = 0, k =
1, · · · , p}, whereg : Y → Rp is a p-vector of convex, Gâteaux differentiable
functions withkth componentgk(x), then the primal problem(Pmin) is a convex
minimization problem with equality constraintsg(3x) = 0. In this case, the ca-
nonical functionF(x) = −f (x) − IXa

(x) = −f (x) is concave and Gâteaux
differentiable inRn, ∂+F(x) = {−Df (x)}. While the subdifferential ofW is a
convex subset ofY∗, i.e.

∂−W(y) =
{ ∑p

k=1 g
∗
k
∂gk(y)

∂y
if y ∈ Ya,

∅ otherwise

where the Lagrange multiplierg∗ ∈ Rp is the dual variable ofg ∈ Rp. In the case
thatf : Xa → R is smooth function, then, the optimality conditionDP(x̄) = 0
leads to the Euler-Lagrange equation

3∗
p∑
k=1

g∗k
∂gk(3x)

∂y
= Df (x), gk(3x) = 0.

Case II. Iff : X→ R is nonsmooth, say, for exampleX = R and

f (x) =
{ 1

2ax
2 if x 6 xa,

1
2ax

2
a + 1

2b(x − xa)2+ x∗b (x − xa) if x > xa,
(2.17)

wherea, b, xa andx∗b are positive constants. In this case, the cost functionf

is nonsmooth (see Figure 2(a)), and its Gâteaux derivative is then a discontinuous
function (see Figure 3a), i.e.

x∗ = Df (x) =
{
ax if x 6 xa,
b(x − xa)+ x∗b if x > xa,

(2.18)

The traditional direct approaches for solving this nonsmooth constrained optimiz-
ation problem is difficult.
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Figure 2. Nonsmooth function and its smooth Legendre conjugate.

Figure 3. Discontinuous constitutive law and continuous inverse form.

By the fact that the Legendre conjugate of the nonsmoothf is a smooth func-
tion, i.e. (see Figure 2(b))

f ∗(x∗) =


1
2a x
∗2 if x∗ 6 x∗a ,

1
2a x
∗2
a + xa(x∗ − x∗a ) if x∗a < x∗ 6 x∗b ,

1
2a x
∗2+ xa(x∗ − x∗a )+ 1

2b (x
∗ − x∗b )2 if x∗ > x∗b ,

(2.19)

its Gâteaux derivative is a continuous function (see Fig. 3b)

x = Df ∗(x∗) =


1
a
x∗ if x∗ 6 x∗a ,
xa if x∗a < x∗ 6 x∗b ,
xa + 1

b
(x∗ − x∗b ) if x∗ > x∗b .

(2.20)

Thus, the dual problem will be much easier than the nonsmooth primal problem.
Case III. Concave minimization and complementarity problems.
If f ∈ 0̂(Xa) is concave and for a givenb ∈ Y = Rm, the feasible space

Ya = {y ∈ Rm| y > b} is a nonempty, closed convex cone, then the primal prob-
lem (2.15) is the so-calledconcave minimization problem.Concave minimization
problems constitutive one of the most fundamental and intensely-studied classes of
problems in global optimization. Generally speaking, concave minimization prob-
lems are NP-hard and will possess many solutions that are local, but not global,
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minima. For this reason, concave optimization problems are also calledmultiex-
tremalglobal optimization problems (see Benson, 1995). The application of stand-
ard algorithms designed for solving constrained convex programming problems
will generally fail to solve multiextremal global optimization problems.

SinceF(x) = −f (x) is convex, the extended problem

P(x) = W(3x) − F(x) = IYa (3x) + f (x)→ min ∀x ∈ X (2.21)

is a d.c. optimization problem. The classical Lagrangian associated with this non-
convex optimization with inequality constraint reads

L(x,µ) = f (x)+ 〈3x − b ; µ〉, (2.22)

whereµ ∈ Y∗ is a Lagrange multiplier. SinceL(x,µ) is concave inx, and we
have infx L(x, µ) = −∞, the classical saddle Lagrange duality does not work for
this nonconvex problem. The extremality conditionDL(x,µ) = 0 leads to the
Euler-Lagrange equation

3∗µ+Df (x) = 0, 3x = b (2.23)

subjected to the KKT condition

3x − b > 0, 〈3x − b ; µ〉 = 0, µ 6 0. (2.24)

For nonsmoothf , traditional direct methods for solving this nonlinear comple-
mentarity problem is very difficult. In this paper, we will show that by use of the
super-Lagrange duality theory, this constrained nonconvex minimization can be
converted into a unconstrained convex minimization dual problem.

EXAMPLE 2. Geometrically nonlinear problems.

Let us now consider the nonconvex optimization problem inX = Rn

P (x) = 1

2
a(

1

2
‖Ax‖2− µ)2− xT c → sta ∀x ∈ Rn, (2.25)

wherea > 0, A : Rn → Rm is a matrix inRmn andc ∈ Rn is a given vector.
Clearly, for any given parameterµ > 0,P(x) is nonconvex onRn. The nonconvex
problem (2.25) appears very often in many applications of physics, engineering
and sciences. For example, in the case thatn = m = 1,A = 1,

P(x) = 1

2
a(

1

2
x2 − µ)2− cx

is adouble-well function(see Figure 4a), which was first studied by van der Waals
in fluids mechanics in 1895. Ifn = m = 2, A = I ∈ R2×2 is an identity, then

P(x) = 1

2
a(

1

2
x2

1 +
1

2
x2

2 − µ)2− c1x1 − c2x2.
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Figure 4. Illustration of the nonconvex function in problem (2.25).

Forc = 0, this is the so-called ‘Mexican hat’ function (see Figure 4b)in cosmology
and theoretical physics. In phase transitions of shape memory alloys, each local
minimizer of the total potentialP corresponding to a certain phase state of material.
However, each local maximizer characterizes the critical conditions that leads to
the phase transitions. In unilateral post-bifurcation analysis, the solution of the
post-buckling state is usually a local minimizer (see Gao, 1998b).

Following the traditional way, we first lety = 3 = A : Rn → Rm be a linear
operator, such thatP(x) = W(Ax) − F(x) with

W(y) = 1

2
a(

1

2
yT y − µ)2, F (x) = xT c.

By the Fenchel-Rockafellar dual theory, the classical dual problem associated with
the linear operator3 = A is

P d(y∗) = −W](y∗) → max s.t. A∗y∗ = c. (2.26)

Since the nonconvexW(y) is not a canonical function, the constitutive equation
y∗ = DW(y) is not one-to-one. Thus, the Legendre conjugate ofW(y) does not
have a simple algebraic expression. Although the Fenchel conjugateW](y∗) is
convex inRm, there exists a duality gap between the primal problem (2.25) and the
Fenchel-Rockafellar dual problem (2.26), i.e., infP(x) > supP d(y∗) due to the
nonconvexity ofP . This duality gap shows that the Fenchel-Rockafellar duality
theory can be used mainly for convex geometrically linear problems.

To put the nonconvex problem (2.25) in our canonical framework, we need to
let3 : Rn→ R be a quadratic operator

y = 3(x) = 1

2
‖Ax‖2− µ = 1

2
xT Cx − µ,

whereC = ATA = CT ∈ Rnn. In finite deformation theory, this nice symmet-
rical matrixC is the well-knownright Cauchy-Green strain tensor. However, in
differential geometry,C is called theRiemannian metric tensor.Then, in terms of
x ∈ Rn andy ∈ R,8(x, y) = W(y)−F(x) = 1

2ay
2−xT c is a canonical function

on Rn × R. The Legendre conjugate of the quadratic functionW(y) = 1
2ay

2 is
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simply defined byW ∗(y∗) = 1
2a
−1y∗2. The canonical constitutive equations

x∗ = DF(x) = c, y∗ = DW(y) = ay
are linear. The tri-canonical equations then can be listed as

y = 1

2
‖Ax‖2− µ, y∗ = ay, (Cx)T y∗ = c.

Since the geometrical operator3 is nonlinear, and the canonical constitutive equa-
tion is linear, the primal problem (2.25) is a geometrically nonlinear optimization
problem inRn.

3. Canonical Dual Transformation and Extended Lagrangians

The goal of this section is to discuss the extended Lagrangians associated with the
fully nonlinear, nonconvex primal problem

(Pext) : P(x) = 8(x,3(x))→ ext ∀x ∈ X

where3 : X → Y is a Gâteaux differentiable operator such that8 ∈ 00(X) ×
00(Y) is an extended canonical function, which is finite and Gâteaux differentiable
on Xa × Ya, i.e.8 ∈ 0G(Xa) × 0G(Ya). Thus, the implicit constraint of(Pext)

is x ∈ Xk = {x ∈ Xa| 3(x) ∈ Ya}. A systematic presentation on the extended
Lagrange duality for geometrically linear systems was given by Gao (1999). Our
aim here is to study general fully nonlinear, global optimization problems.

For any fixedx ∈ X, the partial conjugate function of8 with respect toy is
defined by

8∗y(x, y
∗) = ext{〈y ; y∗〉 −8(x, y)| ∀y ∈ Y}.

Clearly, if 8(x, ·) ∈ 0G(Ya), andY∗a ⊂ Y∗ is the range of the mappingDy8 :
Ya → Y, then the Legendre duality relation

y∗ = Dy8(x, y)⇔ y = Dy∗8
∗
y(x, y

∗)⇔ 8(x, y)+8∗y(x, y) = 〈y ; y∗〉
holds onYa × Y∗a. For the canonical function8 ∈ 00(X) × 00(Y), 8∗∗y (x, y) =
8(x, y) holds onX×Y. Thus, on the so-calledcanonical phase spaceZ = X×
Y∗, the functionH : Z→ R̄ defined by

H(x, y∗) = 8∗y(x, y∗) ∈ 0(X)× 0(Y∗) (3.27)

is called thecanonical Hamiltonianassociated with8.
Symmetrically, for a fixedy ∈ Y, the partial conjugate of8 with respect tox is

8∗x(x
∗, y) = ext

x∈X {〈x , x∗〉 −8(x, y)}.



CANONICAL DUAL TRANSFORMATION METHOD 141

If 8(·, y) ∈ 0G(Xa), andX∗a ⊂ X∗ is the range of the mappingDx8 : Xa → X,
then the Legendre duality relation

8(x, y) +8∗x(x, y) = 〈x , x∗〉
holds onXa ×X∗a.

If the geometrical operator3 : Xa → Ya is linear and its adjoint operator
3∗ : Y∗a → X∗a is onto, then the complementary HamiltonianHc : X× Y∗ → R̄
can be defined by

Hc(x, y∗) = −8∗x(3∗y∗,3x). (3.28)

DEFINITION 3. For a given problem(Pext), if there exists a Gâteaux differenti-
able operator3 : X→ Y and an extended canonical function8 ∈ 00(X)×00(Y)
such thatP(x) = 8(x,3(x)), then the functionL : Z = X× Y∗ → R̄ definded
by

L(x, y∗) = 〈3(x) ; y∗〉 −H(x, y∗) (3.29)

is called theextended Lagrangian formof (Pext) associated with3. It is called the
canonical Lagrangianif L ∈ 0(X)× 0(Y∗). �

Clearly, for any givenx ∈ X, the extended LagrangianL(x, ·) ∈ 0(Y∗) is a
canonical function ofy∗ and

P(x) = ext
y∗∈Y∗

L(x, y∗) ∀x ∈ X.

Thus, for linear3 : X→ Y,L defined by (3.29) is always a canonical Lagrangian
form. However, in geometrically nonlinear systems the convexity ofL(·, y∗) :
X→ R̄ will depend on the operator3 and the canonical dual variabley∗.

A point (x̄, ȳ∗) ∈ X × Y∗ is said to be a critical point ofL if L is Gâteaux-
differentiable at(x̄, ȳ∗) and

DxL(x̄, ȳ
∗) = 0, Dy∗L(x̄, ȳ

∗) = 0.

It is easy to find out that the criticality conditionDL(x̄, ȳ∗) = 0 is equivalent to
the followingcanonical Lagrange equations

DL(x̄, ȳ∗) = 0 ⇒
{
3∗t (x̄)ȳ∗ = Dx8

∗
y(x̄, ȳ

∗),
3(x̄) = Dy∗8

∗
y(x̄, ȳ

∗). (3.30)

In global optimization, the following definitions are needed for the purpose of
studying the generalized Lagrange duality (see, Gao, 1998).

DEFINITION 4. LetL : Z→ R̄ be an arbitrary given function, andZa = Xa ×
Y∗a an open set inZ.
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A point (x̄, ȳ∗) is said to be aright-saddle pointof L onZa if

L(x̄, y∗) 6 L(x̄, ȳ∗) 6 L(x, ȳ∗) ∀(x, y∗) ∈ Za. (3.31)

A point (x̄, ȳ∗) is said to be aleft-saddle pointof L onZa if

L(x̄, y∗) > L(x̄, ȳ∗) > L(x, ȳ∗) ∀(x, y∗) ∈ Za. (3.32)

A point (x̄, ȳ∗) is said to be asub-critical (or∂−-critical) point of L onZa if

L(x̄, y∗) > L(x̄, ȳ∗) 6 L(x, ȳ∗) ∀(x, y∗) ∈ Za. (3.33)

A point (x̄, ȳ∗) is said to be asuper-critical (or∂+-critical) point of L onZa if

L(x̄, y∗) 6 L(x̄, ȳ∗) > L(x, ȳ∗) ∀(x, y∗) ∈ Za. (3.34)

In convex analysis, the right-saddle point is simply called the saddle point. By
the definitions of the extended differentials, the following results show the reason
why the names of the super- and sub-Lagrangians were introduced.

1. A point (x̄, ȳ∗) is a right-saddle point ofL onZ if and only if

0 ∈ ∂−x L(x̄, ȳ∗), 0 ∈ ∂+y∗L(x̄, ȳ∗). (3.35)

2. A point (x̄, ȳ∗) is a sub-critical point ofL onZ if and only if

0 ∈ ∂−x L(x̄, ȳ∗), 0 ∈ ∂−y∗L(x̄, ȳ∗). (3.36)

3. A point (x̄, ȳ∗) is a super-critical point ofL onZ if and only if

0 ∈ ∂+x L(x̄, ȳ∗), 0 ∈ ∂+y∗L(x̄, ȳ∗). (3.37)

In geometrically linear systems (3 : X → Y is linear), the inequalities (3.34)
are equivalent to following symmetrical canonical Hamilton forms:

3x̄ ∈ ∂−y∗H(x̄, ȳ∗), 3∗ȳ∗ ∈ ∂−x H(x̄, ȳ∗).
This is the definition of the so-calledanomalous critical points, introduced by
Auchmuty in geometrically linear problems, which is a special case of the super-
critical points.

Let L : Z → R̄ be a given arbitrary extended function, which is Gâteaux
differentiable onZa = Xa ×Y∗a ⊂ Z. Two functions associated withL(x, y∗) can
be defined by

P(x) = sta
y∗∈Y∗a

L(x, y∗) ∀x ∈ Xa, (3.38)

P d(y∗) = sta
x∈Xa

L(x, y∗) ∀y∗ ∈ Y∗a. (3.39)

The following lemma plays a key role in duality theory for global optimization.
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LEMMA 1. LetL(x, y∗) be an arbitrary function, partially Gâteaux differentiable
on an open subsetZa = Xa × Y∗a ⊂ X× Y∗. If (x̄, ȳ∗) ∈ Xa × Y∗a is one of the
(either right- or left-) saddle points, the super- or sub-critical points ofL, then
(x̄, ȳ∗) is a critical point ofL onZa.

Moreover, ifP is Gâteaux differentiable at̄x, andP d is Gâteaux differentiable
at ȳ∗, thenDP(x̄) = 0,DPd(ȳ∗) = 0, and

P(x̄) = L(x̄, ȳ∗) = P d(ȳ∗). (3.40)

The proof of this lemma can be found in Gao (1998b, 1999) in parametrical
variational analysis.

Any critical point of a Gâteaux differentiable saddle-Lagrangian (resp. super-
Lagrangian) is a saddle-critical (resp. super-critical) point. However, if(x̄, ȳ∗) is
a saddle-critical (or super-critical) point ofL, it does not follows that the exten-
ded LagrangianL is a saddle-Lagrangian (or super-Lagrangian) sinceL is not
necessary to be a canonical function.

Clearly,(x̄, ȳ∗) is a left-saddle (resp. sub-critical) critical point ofL if and only
if it is a right-saddle (resp. super-critical) point of−L. In the following, we only
discuss the right and super-Lagrangians. LetZr = Xr ×Y∗r ⊂ X×Y∗ be an open
subset. In global optimization, the following statements are of important theoretical
value.

(S1) Under certain necessary and sufficient conditions, if

inf
x∈Xr

sup
y∗∈Y∗r

L(x, y∗) = sup
y∗∈Y∗r

inf
x∈Xr

L(x, y∗) (3.41)

holds, then a statement of this type is called asaddle-minimax theoremand the pair
(x̄, ȳ∗) is called asaddle-minimax pointof L onZr .

(S2) Under certain necessary and sufficient conditions if

inf
x∈Xr

sup
y∗∈Y∗r

L(x, y∗) = inf
y∗∈Y∗r

sup
x∈Xr

L(x, y∗). (3.42)

A statement of this type is called asuper-minimax theoremand the pair(x̄, ȳ∗) is
called asuper-minimax pointof L onZr .

(S3) Under certain conditions, a pair(x̄, ȳ∗) ∈ Zr exists such that

L(x, ȳ∗) 6 L(x̄, ȳ∗) > L(x̄, y∗) (3.43)

holds for all(x, y∗) ∈ Zr . A statement of this type is called asuper-critical point
theorem.

By the fact that the suprema ofL(x, y∗) can be taken in either order onXr×Y∗r ,
the equality

sup
x∈Xr

sup
y∗∈Y∗r

L(x, y∗) = sup
y∗∈Y∗r

sup
x∈Xr

L(x, y∗) (3.44)
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always holds. This fact is trivial in convex systems but important in global optim-
ization. A pair(x̄, ȳ∗) which maximizesL onZr is called a localsuper-maximum
point of L onZr .

In classical saddle Lagrange duality theory, the primal and dual functions asso-
ciated withL are defined by the saddle Lagrange dual transformation:

P(x) = sup
y∗∈Y∗

L(x, y∗) ∀x ∈ X, (3.45)

P d(y∗) = inf
x∈XL(x, y

∗) ∀y∗ ∈ Y∗. (3.46)

Theweak minimax duality

inf
x∈XP(x) > sup

y∗∈Y∗
P d(y∗)

is always held for any functionL(x, y∗). For saddle Lagrangian, the following
theorem is well-known (cf. e.g., Walk, 1989; Gao, 1999).

THEOREM 1. Let L : X × Y∗ → R̄ be a saddle-Lagrangian such that the
functionsP : X → R̄ andP d : Y∗ → R̄ are well-defined by (3.45) and (3.46),
respectively, and that the effective domainsXk = domP ⊂ X, Y∗s = domP d ⊂
Y∗ are not empty. Then thestrong saddle-minimax duality theoremin the form

inf
x∈Xk

P (x) = inf
x∈Xk

sup
y∗∈Y∗a

L(x, y∗) = sup
y∗∈Y∗s

inf
x∈Xa

L(x, y∗) = sup
y∗∈Y∗s

P d(y∗)

(3.47)

holds.

In engineering mechanics, the primal feasible setXk is called thekinetically
admissible space, the dual feasible setY∗s is referred as thestatically admissible
space. In the case that8(x, y) = W(y) − F(x) with W ∈ 0̌(Y) andF ∈ 0̂(X),
the extended Lagrangian takes the form

L(x, y∗) = 〈3(x) ; y∗〉 −W ∗(y∗)− F(x). (3.48)

By the Fenchel transformation, for any givenx ∈ X we have

P(x) = sup
y∗∈Y∗

L(x, y∗) = W]](3(x))− F(x) = W(3(x)) − F(x)

for all W ∈ 0̌0(Ya). The effective domain ofP is Xk = {x ∈ Xa| 3(x) ∈
Ya}. On the other hand, if3 is a linear operator, then for any giveny∗ ∈ Y∗, the
Fenchel-Rockafellar dual function takes the form

P d(y∗) = inf
x∈XL(x, y

∗) = F[(3∗y∗)−W](y∗). (3.49)

The effective domain ofP d is Y∗s = domP = {y∗ ∈ Y∗a| 3∗y∗ ∈ X∗a}.
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However, in geometrically nonlinear systems, the dual functionP d and the dual
feasible setY∗s will depend on the nonlinear operator3.

4. Bi-Duality Theory in Global Optimization

In this section, we study the bi-duality theory for general nonconvex systems. We
assume thatL : Xa × Y∗a → R is a given arbitrary function. We letXk ⊆ Xa and
Y∗s ⊆ Y∗a be two subsets such that

sup
y∗∈Y∗a

L(x, y∗) < +∞ ∀x ∈ Xk,

sup
x∈Xa

L(x, y∗) < +∞ ∀y∗ ∈ Y∗s .

The super-critical point duality theorem proposed by Gao (1999) is also true for
global optimization problems.

THEOREM 2. Let the LagrangianL : X×Y∗ → R̄ be a given arbitrary function.
If there exists either a super-maximum point(x̄, ȳ∗) ∈ Xa × Y∗a ⊂ X × Y∗ such
that

max
x∈Xa

max
y∗∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = max
y∗∈Y∗a

max
x∈Xa

L(x, y∗), (4.50)

or a super-minimax point(x̄, ȳ∗) ∈ Xa ×Y∗a such that

min
x∈Xa

max
y∗∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = min
y∗∈Y∗a

max
x∈Xa

L(x, y∗), (4.51)

then(x̄, ȳ∗) is a super-critical point ofL onXa ×Y∗a.
Dually, if L is partially Gâteaux differentiable on an open setXa × Y∗a ⊂

X× Y∗, and(x̄, ȳ∗) is a super-critical point ofL on the open subsetXk × Y∗s ⊂
Xa × Y∗a, then either the super-maximum theorem in the form

max
x∈Xk

max
p∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = max
y∗∈Y∗s

max
x∈Xa

L(x, y∗), (4.52)

holds, or the super-minimax theorem in the form

min
x∈Xk

max
y∗∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = min
y∗∈Y∗s

max
x∈Xa

L(x, y∗) (4.53)

holds.

The proof of this theorem can be found in Gao (1999). This theorem plays an
important role in d.c. programming and dynamical systems. In particular, ifL ∈
0̂(X)× 0̂(Y∗), then we have the followingsuper-Lagrangian duality theorem.



146 DAVID YANG GAO

THEOREM 3. LetL ∈ 0̂(X)× 0̂(Y∗) be partially Gâteaux differentiable on an
open setXa×Y∗a ⊂ X×Y∗, and(x̄, ȳ∗) is a critical point ofL on the open subset
Xk ×Y∗s ⊂ Xa × Y∗a, then either the super-maximum theorem in the form

sup
x∈Xk

sup
p∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = sup
y∗∈Y∗s

sup
x∈Xa

L(x, y∗) (4.54)

holds, or the super-minimax theorem in the form

inf
x∈Xk

sup
y∗∈Y∗a

L(x, y∗) = L(x̄, ȳ∗) = inf
y∗∈Y∗s

sup
x∈Xa

L(x, y∗) (4.55)

holds.

Proof. SinceL ∈ 0̂(X) × 0̂(Y∗) is a super-critical function onX × Y∗, then
its critical points must be the super-critical point onX × Y∗. The theorem can be
easily proved by use of Theorem 2. 2

For a given arbitrary functionL : Za → R, we let

P(x) = sup
y∗∈Y∗a

L(x, y∗) ∀x ∈ Xa, (4.56)

P d(y∗) = sup
x∈Xa

L(x, y∗) ∀y∗ ∈ Y∗a. (4.57)

Both P : X → R̄ andP d : Y∗ → R̄ are generally nonconvex. Thus, the primal
and dual problems associated withL can be proposed as

(Pext) : P(x)→ ext ∀x ∈ X, (4.58)

(P d
ext) : P d(y∗)→ ext ∀y∗ ∈ Y∗. (4.59)

The problems(Pext) and(P d
ext) are realisable if their effective domainsXk andY∗s

are not empty. In classical convex optimization, the maximization problem ofP is
usually replaced by the minimization problem of−P . However, this is not true in
global optimization, and in general,(Pinf) and(Psup) are two different problems.

THEOREM 4 (Bi-duality theorem).LetL : Xa × Y∗a → R be a given arbitrary
function such thatP andP d are well-defined by (4.58) and (4.59) on the nonempty
open effective domainsXk andY∗s , respectively. If(x̄, ȳ∗) ∈ Xk × Y∗s is a super-
critical point ofL on the open domainXa ×Y∗a ⊂ X× Y∗, then

P(x̄) = inf
x∈Xk

P (x) if and only if inf
y∗∈Y∗s

P d(y∗) = P d(ȳ∗); (4.60)

P(x̄) = sup
x∈Xk

P (x) if and only if sup
y∗∈Y∗s

P d(y∗) = P d(ȳ∗). (4.61)

Proof. This theorem follows from the combination of the Lemma 1 and
Theorem 2. 2
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In the case thatL(x, y∗) = 〈3(x) ; y∗〉 − W ∗(y∗) − F(x) is an extended
Lagrange form associated with a d.c. functionP(x) = W(3(x)) − F(x), then the
dual function reads

P d(y∗) = Fd3(y∗)−W ∗(y∗), (4.62)

whereFd3 : Y∗ → R̄ is the so-called3-dual functionof F defined by the following
3-dual transformation:

Fd3(y
∗) = sta{〈3(x) ; y∗〉 − F(x)| ∀x ∈ X}. (4.63)

In geometrically linear systems, the statement (4.60) reduces to Auchmuty’s
anomalous duality theorem. In particular, if the primal function can be written as
P(x) = W(3x) − F(x) with W ∈ 0̌G(Ya) andF ∈ 0̌G(Xa), then the effective
domain domP = Xk = {x ∈ Xa| 3x ∈ Ya}. The dual function

P d(y∗) = F](3∗y∗)−W](y∗)

is also a d.c. function with effective domain domP d = Y∗s = {y∗ ∈ Y∗a| 3∗y∗ ∈
Xa}. In this special case, the statement (4.60) is a more precise version of the
Toland’s double-min duality theorem. In convex Hamilton systems, the total action
P of the system is a d.c. functional (the difference of the total kinetic energy and
the total potential energy). SinceP is not convex, the problem may have many
local extrema. In periodic dynamics, both local minima and local maxima are the
equilibrium states of the systems, and have to be considered simultaneously. As a
traditional minimization problem, the well-known least action principle is in fact a
misnomer. The bi-duality theory, however, gives a complete picture for this type of
problems.

5. Triality Theory in Fully Nonlinear Problems

The triality theory was originally proposed by the author (Gao, 1996, 1997, 1999)
from post-buckling problems in finite deformation theory, where the geometrical
operator3 : X → Y is a quadratic mapping (the right Cauchy-Green tensor).
In this section, we will generalize this interesting result into global optimization
problems. We assume that for any given nonconvex extended functionP : X→ R̄,
there exists a general nonlinear operator3 : X → Y and a canonical function
W ∈ 0(Y) such that the canonical transformation can be written as

P(x) = W(3(x))− 〈x , c〉, c ∈ X∗. (5.64)

SinceF(x) = 〈x , c〉 is a linear function, the HamiltonianH(x, y∗) = W ∗(y∗)+
〈x , c〉 is a canonical function onZ = X×Y∗ and the extended Lagrangian reads

L(x, y∗) = 〈3(x) ; y∗〉 −W ∗(y∗)− 〈x , c〉. (5.65)
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For a fixedy∗ ∈ Y∗, the convexity ofL(·, y∗) : X → R̄ depends on3(x) and
y∗ ∈ Y∗.

Let Za = Xa × Y∗a ⊂ Z be the effective domain ofL, and letLc ⊂ Za be a
critical point set ofL, i.e.

Lc = {(x̄, ȳ) ∈ Xa ×Y∗a| δL(x̄, ȳ∗; x, y∗) = 0 ∀(x, y∗) ∈ Xa ×Y∗a}.
For any given critical point(x̄, ȳ∗) ∈ Lc, we letXr ×Y∗r be its neighborhood such
that onXr×Y∗r , the pair(x̄, ȳ∗) is the only critical point ofL. The following result
is of fundamental importance in global optimization.

THEOREM 5 (Triality theorem).Let (x̄, ȳ∗) ∈ Lc be a critical point ofL and
Xr ×Y∗r a neighborhood of(x̄, ȳ∗).

I. Suppose thatW ∈ 0̌(Ya) is convex. If〈3(x) ; ȳ∗〉 is convex onXr , then

min
x∈Xr

max
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = max
y∗∈Y∗r

min
x∈Xr

L(x, y∗). (5.66)

However, if〈3(x) ; ȳ∗〉 is concave onXr , then either

min
x∈Xr

max
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = min
y∗∈Y∗r

max
x∈Xr

L(x, y∗), (5.67)

or

max
x∈Xr

max
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = max
y∗∈Y∗r

max
x∈Xr

L(x, y∗). (5.68)

II. Suppose thatW ∈ 0̂(Ya) is concave. If〈3(x) ; ȳ∗〉 is concave onXr , then

max
x∈Xr

min
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = min
y∗∈Y∗r

max
x∈Xr

L(x, y∗). (5.69)

However, if〈3(x) ; ȳ∗〉 is convex onXr , then either

max
x∈Xr

min
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = max
y∗∈Y∗r

min
x∈Xr

L(x, y∗), (5.70)

or

min
x∈Xr

min
y∗∈Y∗r

L(x, y∗) = L(x̄, ȳ∗) = min
y∗∈Y∗r

min
x∈Xr

L(x, y∗). (5.71)

Proof. For convexW(y), its Fenchel conjugateW ∗(y∗) is also convex. If〈3(x) ; ȳ∗〉
is convex onXr , thenL ∈ 0̌(Xr ) × 0̂(Y∗) is a saddle function and(x̄, ȳ∗) is a
saddle point ofL onXr ×Y∗r . Thus (5.66) follows from the saddle-Lagrangian du-
ality theorem. However, if〈3(x) ; ȳ∗〉 is concave onXr , thenL ∈ 0̂(Xr )×0̂(Y∗),
and (x̄, ȳ∗) is a super-critical point ofL on Xr × Y∗r . By the super-Lagrangian
duality theorem (Theorem 3), we have either (5.67) or (5.68).

Similarly for concaveW(y). 2
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SinceW ∈ 0(Ya) is a canonical function, we always have

P(x) = ext{L(x, y∗)| y∗ ∈ Y∗} ∀x ∈ Xk. (5.72)

On the other hand, for a given Gâteaux differentiable geometrical mapping3 :
Xa → Ya, the criticality conditionDxL(x̄, y

∗) = 0 leads to the equilibrium
equation

3∗t (x̄)y
∗ = c. (5.73)

If there exists a subspaceY∗s ⊂ Y∗a such that for anyy∗ ∈ Y∗s and a given source
variablec ∈ X∗, the equation (5.73) can be solved forx̄ = x̄(y∗), then by Gao-
Strang’s decomposition3(x) = 3t(x)x +3c(x), the dual functionP d : Y∗s → R
can be written explicitly in the form

P d(y∗) = sta{L(x, y∗)| x ∈ X} = −Gd(y∗)−W ∗(y∗) ∀y∗ ∈ Y∗s , (5.74)

whereGd : Y∗ → R is the so-called pure complementary gap function, defined by

Gd(y∗) = G(x̄(y∗), y∗) = −〈3c(x̄(y
∗)) ; y∗〉. (5.75)

For any given critical point(x̄, ȳ∗) ∈ Lc, we haveGd(ȳ∗) = 〈x̄ , c〉 −
〈3(x̄(ȳ∗)) ; ȳ∗〉. Thus, the Legendre duality relations among the canonical func-
tionsW andW ∗ lead to

P(x̄)− P d(ȳ∗) = 0 ∀(x̄, ȳ∗) ∈ Lc. (5.76)

This identity shows that there is no duality gap between the nonconvex function
P and its canonical dual functionP d . Actually the duality gap, which exists in
classical duality theories, is now recovered by the complementary gap function
G(x̄, ȳ∗).

THEOREM 6 (Tri-duality theorem).Suppose thatW ∈ 0̌(Ya), (x̄, ȳ∗) ∈ Lc is a
critical point of L and Xr × Y∗r is a neighborhood of(x̄, ȳ∗). If 〈3(x) ; ȳ∗〉 is
convex onXr , then

P(x̄) = min
x∈Xr

P (x) if and only if P d(ȳ∗) = max
y∗∈Y∗r

P d(y∗). (5.77)

However, if〈3(x) ; ȳ∗〉 is concave onXr , then

P(x̄) = min
x∈Xr

P (x) if and only if P d(ȳ∗) = min
y∗∈Y∗r

P d(y∗); (5.78)

P(x̄) = max
x∈Xr

P (x) if and only if P d(ȳ∗) = max
y∗∈Y∗r

P d(y∗). (5.79)

Proof. This is a special case of the triality theorem. 2
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In numerical analysis of many engineering problems (such as finite deformation
theory and computational differential geometry), the nonlinear mapping3 : X =
Rn→ Y = Rm is usually a symmetrical quadratic operator fromRn toRm

3(x) = 1

2
xT3x = 1

2


n∑

i,j=1

3k
ij xixj

 ∈ Rm, (5.80)

where3 ∈ Rmnn is the third order tensor

3 = {3k
ij } = {3k

ji} i, j = 1, · · · , n, k = 1, · · · ,m.
By the decomposition3(x) = 3t(x)x +3c(x), the operators3t and its comple-
mentary3c have the forms

3t(x)x =


n∑
i,j=1

3k
ij xixj

 , 3c(x) = −1

2


n∑

i,j=1

3k
ij xixj

 ∈ Rm. (5.81)

The complementary gap function

G(x, y∗) = 〈−3c(x) ; y∗〉 = 1

2

m∑
k=1

n∑
i,j=1

3k
ij xixj y

∗
k =

1

2
xTH(y∗)x (5.82)

is a quadratic function ofx ∈ Rn. Its convexity depends on the Hessian matrix

H(y∗) =
{

m∑
k=1

3k
ij y
∗
k

}
∈ Rnn.

In finite element analysis of large deformation mechanics problems,H(y∗) is usu-
ally a sparse matrix. LetY∗s ⊂ Y∗a be a convex set such that on which, the general-
ized inverseH+(y∗) of H exists and satisfies

H(y∗) = H(y∗)H+(y∗)H(y∗), H+(y∗) = H+(y∗)H(y∗)H+(y∗), ∀y∗ ∈ Y∗s .

Thus, the solution for the equilibrium equation (5.73) is

x̄ = H+(y∗)c ∀y∗ ∈ Y∗s .

In this case, the canonical dual function associated with the quadratic operator can
be written as

P d(y∗) = −1

2
cTH+(y∗)c −W ∗(y∗), (5.83)

which is, in general, a nonconvex function on the dual feasible spaceY∗s ⊂ Rm.
Very often, we haven > m. This dimension reduction is of extremely important in
large scale nonconvex programming.
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Since3 : Rn → Rm is a pure quadratic operator, we have3(x) = −3c(x).
This leads toG(x, y∗) = 〈3(x) ; y∗〉. In this case, Theorems 5 and 6 reduce into
the triality theory proposed in finite deformation mechanics by Gao (1997, 1999).
Thus, for a given̄y∗ ∈ Y∗a, the quadratic gap functionG(·, ȳ∗) : Xa → R is convex
if and only if the Hessian matrixH(ȳ∗) is positive-definite.

6. Applications

EXAMPLE 3. We first consider the geometrically linear nonconvex problems.
Recall the constrained minimization of Concave Function inRn discussed in Sec-
tion 2

(Pmin) : min
x∈Rn

f (x) s.t. x > 0, 3x > b ∈ Rm, (6.84)

wheref ∈ 0̂0(Rn) is a concave function,3 = {λij } : Rn→ Rm is a linear operator
(matrix) inRm×n. To solve this NP-hard problem, we let

Xa = {x ∈ X = Rn| x > 0}, Ya = {y ∈ Y = Rm| y > b}.
The feasible setXk

Xk = {x ∈ Rn| x > 0, 3x > b}
is a convex subset inRn. By letting

F(x) = −f (x)+ IXa
(x), W(y) = IYa (y).

the extended problem can be written as

P(x) = IYa (3x)+ f (x)− IXa
(x)→ min ∀x ∈ Rn.

Sincef ∈ 0̂(Rn), the extended functionP : Rn→ R̄ is indeed a d.c. function.
For the convex functionW(y) = IYa (y), its Fenchel conjugate can be computed

as

W](y∗) = sup
y∈Rm
{〈y ; y∗〉 −W(y)} = sup

y>b
〈y ; y∗〉

= 〈b ; y∗〉 + IY∗a (y
∗) ∀y∗ ∈ Rm,

where

Y∗a = {y∗ ∈ Rm| y∗ 6 0}
is a negative cone inRm. Then, the extended Lagrangian associated with this
nonconvex optimization with inequality constraint reads

L(x, y∗) = 〈3x − b ; y∗〉 − IY∗a (y
∗)+ f (x)− IXa

(x). (6.85)
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Clearly,L : Rn × Rm→ R̄ is a super-Lagrangian. Its effective domain

Za = Xa ×Y∗a = {(x, y∗) ∈ Rn × Rm| x > 0, y∗ 6 0}
is a convex set inRn × Rm. On Za, the criticality conditionDL(x̄, ȳ∗) = 0 will
lead to a so-calledbi-complementarity problem(see Gao, 1998a). For any given
y∗ ∈ Y∗a, the dual function ofP can be obtained by the super-Lagrangian dual
transformation

P d(y∗) = sup
x∈Rn

L(x, y∗) = −f [(−3∗y∗)− 〈b ; y∗〉 ∀y∗ ∈ Y∗a, (6.86)

wheref [ ∈ 0̂(Rn) is the Fenchel sub-conjugate of the concave functionf ∈
0̂(Rn). Thus, the dual problem associated with(Pmin) is a convex minimization
problem

(P d
min) : P d(y∗) = −f [(−3∗y∗)− 〈b ; y∗〉 → min s.t. y∗ 6 0 ∈ Rm.

(6.87)

By the fact that the Fenchel conjugate of a nonsmooth function could be smooth,
the solution of this convex dual problem is much easier than the primal one. Since
L(x, y∗) is a super-Lagrangian onRn×Rm, the bi-duality theorem holds onXa ×
Y∗a.

In particular, if the inequality constraint3x > b in (Pmin) is replaced by
the equality constraint3x = b, thenY∗a = Rm. In this case, the dual problem
(P d

min) of the constrained, nonconvex/nonsmooth primal problem(Pmin) in Rn
is a unconstrained, smooth convex minimization problem inRm! Very often, we
haven > m. This dimension reduction technique is extremely important in large
scale nonlinear programming in finite element analysis (see Gao, 1988b). More
interesting examples can be found in Gao (1999). �

EXAMPLE 4. As a special case, let us consider the constrained extremum prob-
lem of a given concave function in one-dimension:

(Pext) : f (x) = cx − 1

2
ax2 → ext ∀x ∈ Ī = [xa, xb] (6.88)

wherea > 0, c ∈ R are given constraints. We assume that−∞ < xa < 0< xb <
∞. Sincef (x) is strictly concave on the open domainI = (xa, xb), the minima
are attained only on the boundary ofI , i.e.

inf
x∈[xa,xb]

f (x) = min{f (xa), f (xb)} > −∞.

On the other hand, if the critical pointx̄ = c/a of f (x) is in I = (xa, xb), then the
maximization problem(Pmax) is realizable and

sup
x∈Ī

f (x) = max
x∈Ī

f (x) = f ( c
a
).
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There are many ways to set this problem within our framework, but each of
them will lead to a different dual problem. Here we letX = R,Xa = [xa, xb] and
3 = 1, then

y = 3x = x ∈ Y = R.
Thus, the range of the mapping3 : Xa → Y = R is Ya = [xa, xb]. Let F(x) =
−f (x) and

W(y) =
{

0 if y ∈ Ya,

+∞ if y /∈ Ya.

It is not difficult to check thatW : Y → R ∪ {+∞} is convex. OnYa, W is finite
and differentiable. Thus, the primal feasible set can be defined by

Xk = {x ∈ Xa| 3x = x ∈ Ya} = [xa, xb].
The constrained primal problem(Pext) is then equivalent to the unconstrained
nonconvex extended global optimization problem

(Pext) : P(x) = W(3x) − F(x) → ext ∀x ∈ R. (6.89)

SinceF(x) = −f (x) is strictly convex and differentiable onXa = [xa, xb],
and

x∗ = DF(x) = ax − c ∈ X∗a = [xaa − c, xba − c] ⊂ X∗ = R
is invertible, the Legendre conjugateF ∗ : X∗a → R can easily be obtained as

F ∗(x∗) = max
x∈Xa

{xx∗ − F(x)} = 1

2a
(x∗ + c)2.

By the Legendre-Fenchel transformation, the conjugate of the nonsmooth func-
tionW can be obtained as

W ∗(y∗) = sup
y∈Y
{yy∗ −W(y)} = max

y∈Ya
yy∗ =

 xby
∗ if y∗ > 0,

0 if y∗ = 0,
xay
∗ if y∗ < 0.

It is convex and differentiable onY∗a = Y∗ = R.
On Xa × Y∗a = [xa, xb] × R, the extended Lagrangian associated with the

problem(Pext) is well-defined by

L(x, y∗) = y∗3x −W ∗(y∗)− F(x)
=
{
xy∗ − xby∗ − 1

2ax
2 + cx if y∗ > 0,

xy∗ − xay∗ − 1
2ax

2 + cx if y∗ < 0.
(6.90)
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Since bothW ∗ andP are convex,L(x, y∗) is a super-critical point function. If
x ∈ Xk = [xa, xb], then

P(x) = sup
y∗∈Y∗a

L(x, y∗).

On the other hand, for anyy∗ in the dual feasible set

Y∗s = {y∗ ∈ Y∗a = R| 3∗y∗ = y∗ ∈ X∗a} = [xaa − c, xba − c],
the dual function is obtained by

P d(y∗) = sup
x∈Xa

L(x, y∗) = sup
x∈R
{3xy∗ − F(x)} −W ∗(y∗)

= F ∗(3∗y∗)−W ∗(y∗),
where

F ∗(3∗y∗) = sup
x∈Xa

{3xy∗ − F(x)} = sup
x∈R
{x(y∗ + c)− 1

2
ax2}

= 1

2a
(y∗ + c)2 = F ∗(y∗).

Thus, the dual actionP d is well defined onY∗s by

P d(y∗) =


1
2a (y

∗ + c)2− xby∗ if y∗ > 0,
1
2a c

2 if y∗ = 0,
1
2a (y

∗ + c)2− xay∗ if y∗ < 0.
(6.91)

This is a double-well function onR (see Figure 5). The dual problem

(P d
ext) : P d(y∗)→ ext ∀y∗ ∈ Y∗s

is a convex optimization problem on either

Y∗+s = {y∗ ∈ Y∗s | y∗ > 0} or Y∗−s = {y∗ ∈ Y∗s | y∗ < 0}.
In n-dimensional problems, this dual problem is much easier than the primal prob-
lem. The criticality condition of(P d

ext) leads to

ȳ∗ =
{
xba − c if ȳ∗ > 0,
xaa − c if ȳ∗ < 0.

It is easy to check that the following duality theorems hold:

max
x∈Xk

P (x) = max
y∗∈Y∗s

P d(y∗),

min
x∈X±k

P (x) = min
y∗∈Y∗±s

P d(y∗),
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Figure 5. Bi-duality in constrained nonconvex optimization.

whereX+k = {x ∈ R| 0 6 x 6 xb}, X−k = {x ∈ R| xa 6 x 6 0}. The graphs
of P(x) andP d(y∗) are shown in Fig. 5. IfĪ = [0, xb], then the primal minim-
ization problem(Pinf) is equivalent to a nonconvex variational inequality problem
(or unilateral variational problem). In multi-dimensional systems, traditional direct
approaches are very difficult. However, the super-Lagrange dual problem(P d

inf) is
a strictly convex minimization problem onY∗+s , which is substantially easier than
the primal one.

EXAMPLE 5. We now illustrate the application of the interesting tri-duality the-
ory for solving the nonconvex optimization problem (2.25)

P(x) = 1

2
a(

1

2
‖Ax‖2− µ)2− xT c → sta ∀x ∈ Rn. (6.92)

The Euler equation associated with this nonconvex stationary problem is a nonlin-
ear algebraic equation inRn

a(
1

2
‖Ax̄‖2− µ)Cx̄ = c,

whereC = ATA = CT ∈ Rnn. We are interested in finding all the critical points
of P . Let X = Rn = X∗, and3 : Rn→ Y = R a quadratic operator

y = 3(x) = 1

2
‖Ax‖2− µ = 1

2
xT Cx − µ.

SinceF(x) = 〈x , c〉 = xT c is a linear function onRn, the admissible space
Xa = X = Rn. By the fact thatx∗ = DF(x) = c, the range for the canonical
mappingDF : X→ X∗ = R is a hyperplane inRn, i.e.

X∗a = {x∗ ∈ Rn| x∗ = c}.
The feasible set for the primal problem isXk = {x ∈ Xa| 3(x) ∈ Ya} = Rn.

By the fact thatxT Cx > 0 ∀x ∈ Xa = X = Rn, the range for the geometrical
mapping3 : Xa → R is a closed convex set inR

Ya = {y ∈ R| y > −µ} ⊂ Y = R.
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On the admissible subsetYa ⊂ Y = R, the canonical functionW(y) = 1
2ay

2 is
quadratic. The range for the constitutive mappingDW : Ya → Y∗ = R is also a
closed convex set inR

Y∗a = {y∗ ∈ R| y∗ > −aµ}.
OnY∗a, the Legendre conjugate ofW is also strictly convex

W ∗(y∗) = 1

2
a−1y∗2, (6.93)

and the Legendre duality relations hold onYa ×Y∗a.
OnXa × Y∗a = Rn × R, the extended Lagrangian in this case reads

L(x, y∗) = 1

2
y∗xT Cx − µy∗ − 1

2
a−1y∗2 − xT c. (6.94)

It is easy to check that the dual function associated withL is

P d(y∗) = 1

2
(y∗)−1cT Cc − µy∗ − 1

2a
y∗2.

The dual Euler-Lagrange equation is an algebraic equation inR:

(µ+ a−1y∗)y∗2 = 1

2
σ 2, σ 2 = cT Cc. (6.95)

SinceC ∈ Rnn is positive-definite, this equation holds only onY∗a. For a given
parameterµ and c ∈ Rn, this dual equation has at most three real rootsy∗k ∈
Y∗a, k = 1,2,3, which leads to the primal solution

xk = y∗kC+c, k = 1,2,3.

By Lemma 1 we know that each(xk, y∗k ) is a critical point ofL and

P(xk) = L(xk, y∗k ) = P d(y∗k ), k = 1,2,3.

In the case ofn = 1, the graphs ofP andP d are shown in Figure 6. It was
proved in Gao (1998b) that ifµ < µc = 1.5(σ/a)2/3 the problem has only one
global minimizer (see Figure 6(a)). However, ifµ > µc, the dual Euler–Lagrange
Equation (6.95) has three rootsy∗1 > 0 > y∗2 > y∗3, corresponding to three critical
points ofP d (see Figure 6(b)). Then,y∗1 is a global maximizer ofP d , x1 = σ/y∗1
is a global minimizer ofP , P d takes local minimum and local maximum values at
y∗2 andy∗3, respectively,x2 = σ/y∗2 is a local maximizer ofP , while x3 = σ/y∗3 is
a local minimizer.

The Lagrangian associated with this double-well energy is

L(x, y∗) = 1

2
x2y∗ − ( 1

2a
y∗2+ µy∗)− y∗x.

It is a saddle function fory∗ > 0. If y∗ < 0, it is a super-critical point function (see
Figure 7).
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Figure 6. Double-well energyP(x) (solid lines) and its dualPd(y∗) (dashed lines).

Figure 7. Lagrangian for the double-well energy in the Example 5.

7. Concluding Remarks

The concept of duality is one of the most successful ideas in modern optimization.
The inner beauty of duality theory owes much to the fact that the nature was origin-
ally created in a splendid harmonious way. By the fact that the canonical physical
variables appear always in pairs, the canonical dual transformation method can be
used to solve many problems in natural systems. The associated extended Lagrange
duality and triality theories have profound computational impacts. Compared with
the traditional direct methods in global optimization problems, the main advantages
of the canonical dual transformation method can be listed as the following.

1. Provides powerful and efficient primal-dual alternative approaches;
2. Converts nonsmooth constrained problems into smooth unconstrained dual

problems;
3. Reduces the dimensions in nonlinear programming.
For any given nonlinear problem, as long as there exists a geometrical operator

3 such that the tri-canonical forms can be characterized correctly, the canon-
ical dual transformation method and associated duality and triality principles can
be used to establish nice theoretical results and to develop powerful alternative
algorithms for robust computations. For a given nonlinear operator3(x) and asso-
ciated canonical dual variabley∗ ∈ Y∗a, the extended LagrangianL(·, y∗) : Xa →
Rmay not be a canonical function ofx ∈ Xa. In this case, the so-calledsequential
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canonical dual transformation, proposed by Gao (1999) in one-dimensional func-
tional spaces, can be used to construct ahigh order canonical LagrangianLn for
solving problems with multi-well cost functions.
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